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Last year at Types we presented Clocked Cubical Type Theory (CCTT) [5], a type the-
ory combining multi-clocked guarded recursion with Cubical Type Theory. One use case for
this type theory is for programming and reasoning with coinductive types, encoding these via
guarded recursion. CCTT allows one to do this also for coinductive types defined using higher
inductive types, and one can moreover prove that path type equality for these coincides with
bisimilarity. Another use is as a meta-language for both operational and denotational models
of programming languages. This talk presents a worked example of using both these ideas, and
is based on our newly published paper [9].

Guarded Powerdomains in Clocked Cubical Type Theory

Clocked Cubical Type Theory extends Cubical Type Theory with a pre-type of clocks, and for
each clock κ, a modality .κ and a fixed point combinator fixκ : (.κA → A) → A. One use
of the fixed point combinator is to construct guarded recursive types, such as LκA satisfying
LκA ' A+ .κLκA as fixed points of maps on the universe. Defining a κ-delay algebra to be a
type B with an operations .κB → B, LκA is the free κ-delay algebra on A. Using quantification
over clocks, one can use these to encode coinductive types such as LA

def
= ∀κ.LκA which is the

coinductive solution to LA ' A+ LA. This latter is the coinductive delay monad, which can be
used to model recursion in type theory, however, working with the guarded recursive variant Lκ

gives access to a powerful fixed point operator, and, moreover, guarded recursive types can also
have negative occurrences. This has been used for a form of guarded synthetic domain theory,
producing models of FPC and PCF and proving these adequate in type theory [8, 11].

This work studies the extension of such models with finite non-determinism. We construct
two guarded recursive powerdomains by combining Lκ with the finite powerset functor Pf ,
defined as a HIT [3], generated by singleton, union and axioms making it the free join-semilatice.
The powerdomains are defined as follows

Pκ
3(A) ' Pf(A+ .κPκ

3(A)) Pκ
2(A)

def
= Lκ(Pf(A))

The first of these is a monad defined as a guarded recursive type. An element of this type is a
finite set of values of type A and computations that can be run for at least one more step. The
subscript refers to may-convergence and is intuitively justified by the fact that it reveals return
values for terminated branches even when other branches have not yet terminated. The second
is simply the composition of two monads. Unlike Pκ

3, elements of Pκ
2 do not reveal partial

results, but just returns a set of values once all branches have terminated. Unfortunately, Pκ
2 is

not a monad, since the associativity axiom breaks up to step counting. It is, however, a monad
up to a notion of weak bisimilarity.
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Semantics for the untyped lambda calculus
Both these constructions carry a semilattice structure. In the case of Pκ

3 the union operation
is defined using the one for Pf . In the case of Pκ

2, the union operations evaluates the two given
computations in parallel and returns the union once they have both terminated. This means
that the delay is the maximum of the delays of the two input computations. Algebraically,
Pκ
3(A) is the free join semilattice and κ-delay algebra on A with no equations between the two

structures. For Pκ
2(A), the delay algebra structure distributes over the semilattice one, but also

satisfies additional non-algebraic interaction equations.
Using the semilattice structures, one can define denotational semantics for the untyped

lambda calculus extended with finite non-determinism in the form of an operation M orN .
In both cases, the domain of the denotational semantics is a solution to a guarded recursive
domain equation defined as

SValκ
def
= .κ(SValκ → T (SValκ)) Dκ def

= T (SValκ)

where T can be instantiated to Pκ
3 and Pκ

2 (or indeed any monad-like construction with a
semilattice structure). This semantics can be proved sound with respect to the standard big-
step may- and must operational semantics which we write as ⇓3 and ⇓2 respectively.

Applicative similarity
As an example application of these powerdomains, we look at how to prove applicative similarity
a congruence for the untyped lambda calculus with finite non-determinism. This is usually
proved using operational reasoning and Howe’s method [7, 6, 4, 2], or in some cases advanced
domain theoretic techniques such as Stone duality [10, 1]. Here we build on a proof by Pitts [12],
which uses a denotational semantics in domain theory and a relation between syntax and
semantics. Our contribution is to extend from the case of pure lambda calculus to finite non-
determinism and adapt to guarded synthetic domain theory.

In a few more details, a relation R is an applicative may-simulation if M RN and M ⇓3
λx.M ′ implies

∃N ′. N ⇓3 λy.N ′ ∧ (∀(V : Val).M ′[V/x]RN ′[V/x])

May-similarity ≤3 is the greatest may-simulation, and this can be defined in Clocked Cubical
Type Theory using a combination of guarded recursion and quantification over clocks, similarly
to the coinductive delay monad L. The aim is to show that this is a congruence. Our proof uses
a relation �κ: Dκ × Λ → Prop between the denotational semantics mentioned in the previous
section, and syntax. The key lemmas state that JMKκ �κ M for all closedM , and thatM ≤3 N
is equivalent to ∀κ.JMKκ �κ N . We prove a similar result for the case of must-similarity.

Implementation
The results mentioned above have been proved on paper, and only few lemmas have been
formally verified in a proof assistant. In the time since this work was completed, Vezzosi has
implemented an experimental extension of Agda1 based on CCTT. Using this it should now
be possible to implement these proofs in Agda without much overhead from the paper versions
developed in this work. One point of the talk is therefore to announce the Agda branch for
CCTT to the Types community.

1https://github.com/agda/guarded/tree/forcing-ticks
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