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The name of linear logic [10] suggests that this logic has some relation with the algebraic
notion of linearity. A common account of this relation is that a proof of a linear implication
between two propositions A and B should not be any function mapping proofs of A to proofs
of B, but a linear one. This idea has been fruitfully exploited to build models of linear logic
(for example [3, 9, 11]), but it is seems difficult to even formulate it within the proof language
itself. Indeed, expressing the properties f(u + v) = f(u) + f(v) and f(a.u) = a.f(u) requires
an addition and a multiplication by a scalar, that are usually not present in proof languages.

The situation has changed with quantum programming languages [1,2,4,7,8,12,14] and with
the algebraic λ-calculus [13], that mix some usual constructions of programming languages with
algebraic operations. Several extensions of the lambda-calculus, or of a language of proof-terms,
with addition and multiplication by a scalar have been proposed [2, 5, 13].

In this paper [6], we investigate an extension of linear logic with addition and multiplication
by a scalar, the LS -logic, and we prove a linearity theorem: if f is a proof of an implication
between two propositions of some specific form, then f(u+v) = f(u)+f(v) and f(a.u) = a.f(u).

This work is part of a wider research program that aims at determining in which way
propositional logic must be extended or restricted, so that its proof language becomes a quantum
programming language. There are two main issues in the design of a quantum programming
language: the first is to take into account the linearity of the unitary operators and, for instance,
avoid cloning, and the second is to express the information-erasure, non-reversibility, and non-
determinism of the measurement. In [5], we addressed the question of the measurement. In
this paper [6], we address that of linearity.

Interstitial rules. To extend linear logic with addition and multiplication by a scalar, we
proceed, like in [5, long version], in two steps: we first add interstitial rules and then scalars.

An interstitial rule is a deduction rule whose premises are identical to its conclusion. In the
LS -logic, we consider two such rules

Γ ⊢ A Γ ⊢ A
Γ ⊢ A

sum Γ ⊢ A
Γ ⊢ A

prod

These rules introduce constructors + and • in the proof language, that are used to express the
addition and the multiplication by a scalar. The fact that these deduction rules are trivial
expresses the fact that these operations are internal.

Adding these rules permits to build proofs that cannot be reduced, because the introduction
rule of some connective and its elimination rule are separated by an interstitial rule. Reducing
such a proof, sometimes called a commuting cut, requires reduction rules to commute the rule
sum either with the elimination rule below or with the introduction rules above.

Scalars. We then consider a field S of scalars and replace the introduction rule of the
connective ⊤ with a family of rules ⊤-i(a), one for each scalar, and the rule prod with a family
of rules prod(a), also one for each scalar

Γ ⊢ ⊤
⊤-i(a) Γ ⊢ A

Γ ⊢ A
prod(a)

∗This is an extended abstract. The full paper can be found at [6]
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The connective ⊙. Besides interstitial rules and scalars, we have introduced, in [5, long
version], a new connective ⊙ (read “sup” for “superposition”), that has an introduction rule ⊙-i
similar to that of the conjunction, two elimination rules ⊙-e1 and ⊙-e2 similar to those of the
conjunction, but also a third elimination rule ⊙-e similar to that of the disjunction.

The elimination rules ⊙-e1 and ⊙-e2 are used to express the information-preserving, re-
versible, and deterministic operations, such as the unitary transformations of quantum com-
puting. The elimination rule ⊙-e is used to express the information-erasing, non-reversible, and
non-deterministic operations, such as quantum measurement.

Starting from propositional logic with the interstitial rules sum and prod, we can thus either
add scalars, or the connective ⊙, or both. This yields the four logics: PL is propositional logic
with the interstitial rules sum and prod, PLS is propositional logic with the interstitial rules
and scalars, ⊙ is propositional logic with the interstitial rules and the connective ⊙, and ⊙S is
propositional logic with the interstitial rules, the connective ⊙, and scalars.

Linearity. The proof language of the ⊙S -logic is a quantum programming language, as
quantum algorithms can be expressed in it. However, this language addresses the question of
quantum measurement, but not the that of linearity, and non-linear functions, such as cloning
operators, can also be expressed in it. This leads to introduce, in our paper [6], a linear variant
of the ⊙S -logic, and prove a linearity theorem for it. More generally, we can introduce a linear
variant for each of the previously mentioned four logics: L is linear logic with the interstitial
rules sum and prod, LS is linear logic with the interstitial rules and scalars, L⊙ is linear logic
with the interstitial rules and the connective ⊙, and L⊙S is linear logic with the interstitial
rules, the connective ⊙, and scalars.

Our goal is to prove a linearity theorem for the proof language of the L⊙S -logic. But such a
theorem does not hold for the full L⊙S -logic, that contains the rule ⊙-e, that enables to express
measurement operators, which are not linear. Thus, our linearity theorem should concern the
fragment of the L⊙S -logic without this rule. But, if ⊙-e rule is excluded, the connective ⊙ is
just the conjunction, and this fragment of the L⊙S -logic is the LS -logic.

So, for a greater generality, we prove our linearity theorem for the LS -logic: linear logic
with the interstitial rules and scalars, but without the ⊙ connective, and discuss, at the end of
the paper [6], how this result extends to the L⊙S -logic.

Linear connectives. In the LS -logic, we have to make a choice of connectives.
In intuitionistic linear logic, there is no multiplicative falsehood, no additive implication, and

no multiplicative disjunction. Thus, we have two possible truths and two possible conjunctions,
but only one possible falsehood, implication, and disjunction.

In the LS -logic, we have chosen a multiplicative truth, an additive falsehood, a multiplicative
implication, an additive conjunction, and an additive disjunction. The rule sum also is additive.
The choice is not arbitrary, some variants do not exists in intuitionistic linear logic, others where
necessary due to the interstitial rules.

Plan of the paper [6]. We first define the LS -logic and its proof-language: the LS -
calculus, and prove that it verifies the subject reduction, confluence, termination, and intro-
duction properties. We then show how the vectors of Sn can be expressed in this calculus
and how the irreducible closed proofs of some propositions are equipped with a structure of
vector space. We prove that all linear functions from Sm to Sn can be expressed as proofs
of an implication between such propositions. We then prove the main result of this paper:
that, conversely, all the proofs of implications between such propositions are linear. Finally, we
show how this result extents to the proof language of the L⊙S -logic and how this language is
a quantum programming language.
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