
Towards a denotational semantics of streams for a verified

Lustre compiler

Timothy Bourke, Paul Jeanmaire, Marc Pouzet

DI ENS, École normale supérieure, Université PSL, CNRS, INRIA, Paris, France

Vélus [1] is a formally verified compiler for the Lustre synchronous programming language.
It is developed in Coq and uses the CompCert C compiler as a back-end. The correctness
theorem links the dataflow semantics of the source language to the semantics of the generated
assembly code. Its proof is a composition of the individual proofs of each compilation pass.

For Vélus it has been proved that repeated execution of the generated assembly code faith-
fully implements the dataflow semantics of source programs. To facilitate the compilation
correctness proof, the choice was made to model the input language with a relational-style
semantics, as shown in the following statement.

Theorem (compilation correctness, simplified). Given a Lustre node f , a list of input streams
xs and a list of output streams ys, if f is successfully compiled to an assembly program P then:

sem node f xs ys =⇒ ∃T ∈ Traces(P ), T ' (xs, ys).

Here the inductive predicate sem node : node→ list Stream→ list Stream→ Prop describes
a relation whose elements are, for each node, the possible pairs of input and output streams.
Since Lustre nodes denote deterministic stream functions, we were able to show that for all f ,
xs, ys and ys′, sem node f xs ys =⇒ sem node f xs ys′ =⇒ ys ' ys′.

While these definitions are well-tailored to establish compilation correctness, notably in the
transition between dataflow and imperative languages, they do not give a procedure to build
streams that satisfy the predicates. In particular, the determinism of nodes ensures that there
is at most one possible output for a given input, but it does not guarantee the existence of
such an output. Although unlikely, it could be the case that sem node has no inhabitants, thus
rendering void the main correctness theorem.

Since directly stating and proving the existence of a witness is very challenging due to the
mutually recursive nature of equations in a Lustre node, it seems more appropriate to reason
forward by defining a constructive interpretation of Lustre programs and then showing that the
computed streams actually satisfy sem node.

Kahn
networks

synchronous
programs

verified
compilation

One possible approach is to consider the original definition of the language. The set of
Lustre programs is naturally determined as a restricted class of Kahn networks [2] that can
be executed synchronously and with bounded buffers. The ability to statically bound the
required memory has long been exploited to design control software, especially in the certified
development of safety-critical applications. In [3], Christine Paulin-Mohring describes how to



Towards a denotational semantics for Vélus Bourke, Jeanmaire, Pouzet

give a constructive denotational semantics to Kahn networks in Coq by means of a general
library for CPOs, defining stream operations as the least fixed-points of continuous functions.

We are using this library to define a denotational semantics for Lustre. The aim is to provide
a more natural front-end semantics for Vélus, closer to the one introduced in seminal articles [4].
There are two potential advantages to this approach. First, we believe it will facilitate the
existence proof, because the the sem node predicate is defined in a similar manner. A witness
could also be constructed using a different style, for instance, using coiteration [5] which defines
streams using iterated transition functions. We think, though, that it would be more difficult
to relate the sequence global valuations so generated to the streams used in sem node. There
is also reason to believe that a denotational model à la Kahn may be the most convenient
for interactively verifying Lustre programs that involve sampling since the absence of values is
represented implicitly [6].

Mechanizing synchronous programs as Kahn networks in Coq challenges us to finely state
the assumptions necessary to ensure that they compile correctly and execute safely. In the
Kahn model, streams are built by iterating continuous stream functions, starting from the
empty sequence. The first step is to ensure that the computed streams are indeed infinite,
as required by sem node. We are proving it by characterizing the class of constructive stream
functions and exploiting a causality predicate required of source programs.

Finally, we obtain a denotation J·K of Lustre components. For every node f , JfK is a total
continuous function that maps infinite input streams to infinite output streams that may contain
error values. We aim to show that these errors only arise from runtime exceptions (division by
zero, integer overflow, etc.) which cannot be detected statically. We conjecture that if no such
error occurs in output or local streams, then the relational predicate sem node holds.

Conjecture (coherence of the relational semantics). Given a Lustre node f and a list of input
streams xs, if JfK(xs) is exempt of runtime errors then:

sem node f xs (JfK(xs)).

References

[1] T. Bourke, L. Brun, P.-E. Dagand, X. Leroy, M. Pouzet, and L. Rieg, “A formally verified compiler
for Lustre,” in PLDI 2017 - 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, (Barcelone, Spain), ACM, June 2017.

[2] G. Kahn, “The semantics of a simple language for parallel programming,” in Information Processing,
Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974 (J. L. Rosenfeld,
ed.), pp. 471–475, North-Holland, 1974.

[3] C. Paulin-Mohring, “A constructive denotational semantics for Kahn networks in Coq,” in From
Semantics to Computer Science (Y. Bertot, G. Huet, J.-J. Lévy, and G. Plotkin, eds.), pp. 383–413,
Cambridge University Press, 2009.

[4] P. Caspi and M. Pouzet, “Synchronous Kahn networks,” Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP, vol. 31, 08 2001.

[5] P. Caspi and M. Pouzet, “A co-iterative characterization of synchronous stream functions,” in First
Workshop on Coalgebraic Methods in Computer Science (CMCS’98), vol. 11 of ENTCS, (Lisbon,
Portugal), pp. 1–21, Elsevier Science, Mar. 1998.

[6] C. Canovas-Dumas and P. Caspi, “A PVS proof obligation generator for Lustre programs,” in Logic
for Programming and Automated Reasoning, 7th International Conference, LPAR 2000, Reunion
Island, France, November 11-12, 2000, Proceedings (M. Parigot and A. Voronkov, eds.), vol. 1955
of Lecture Notes in Computer Science, pp. 179–188, Springer, 2000.

2


