
Forwarders as Process Compatibility, Logically

Marco Carbone1, Sonia Marin2, and Carsten Schürmann1

1 Computer Science Department, IT University of Copenhagen, Denmark
carbonem | carsten@itu.dk

2 School of Computer Science, University of Birmingham, United Kingdom
s.marin@bham.ac.uk

Session types, originally proposed by Honda et al. [8], are type annotations that ascribe pro-
tocols to processes in a concurrent system and determine how they behave when communicating
together. Binary session types found a logical justification in linear logic, identified by Caires
and Pfenning [2] and later by Wadler [13, 14], which establishes the following correspondences:
linear logic propositions as session types, proofs as processes, cut reductions in linear logic as
reductions in the operational semantics, and duality as a notion of compatibility ensuring that
two processes communications match.

The situation is not as direct for multiparty session types [9, 10], which generalize binary
session types to protocols with more than two participants. One of the central observations
is that compatibility requires a stronger property than duality, still ensuring that all messages
sent by any participating party will eventually be collected by another. In [6], Deniélou and
Yoshida first proposed the notion of multiparty compatibility as a “new extension to multiparty
interactions of the duality condition for binary session type”.

In this work, we carve out a fragment of classical linear logic (CLL) that adequately captures
the notion of multiparty compatibility. We observe moreover that the processes corresponding
to proofs in this fragment act as forwarders of messages between participants, generalizing
existing proposals, such coherence [5], arbiters [3], and medium processes [1]. Our main result
is that the multiparty compatibility of processes can be formalized by the means of a forwarder,
and conversely, that any set of processes modelled by a forwarder is compatible.

Processes and types. The language of processes we use to represent communicating entities
is a standard variant of the π-calculus [12] used in the context of session types: P ,Q ::=
x↔ y (link) | x().P (wait) | x[] (close) | x(y).P (input) | x[y . P].Q (output).

Types, taken to be propositions of CLL, denote the way an endpoint x (a channel’s end)
must be used at runtime. In this work, we must annotate each operator with another endpoint
u (or a list of endpoints ũ in the case of gathering of communications) to make explicit the
destination of messages. Therefore, the syntax of types is defined as A,B ::= a | a⊥ | ⊥u |
1ũ | (A`u B) | (A⊗ũ B), where a denotes atoms.

Multiparty compatibility. Multiparty compatibility [6, 11, 7] is a semantic notion that uses
types as abstractions of the processes behaviors and simulates their execution.

In order to give a semantics to types, we introduce FIFO queues defined as Ψ ::= ε | A ·Ψ |
∗ · Ψ, capturing messages that are waiting to be delivered. A message can be a proposition
A or a session termination symbol ∗. Every pair of endpoints (x, y) has an associated queue
containing messages in transit from endpoint x to endpoint y. A queue environment σ is a
mapping from pairs of endpoints to queues: σ : (x, y) 7→ Ψ. σε denotes the queue environment
with only empty queues while σ[(x, y) 7→ Ψ] denotes a new environment where the entry for
(x, y) has been updated to Ψ.

We define the type-context semantics for context ∆ = x1 : B1, . . . , xk : Bk given environment
σ as the minimum relation on ∆ • σ following rules in Fig. 1. Let α1, . . . , αn denote a path
for context ∆ if ∆ • σ α1−→ ∆1 • σ1 . . .

αn−−→ ∆n • σn. This path is maximal if there is no

Forwarders as Process Compatibility, Logically M. Carbone, S. Marin, and C. Schürmann

x : a⊥, y : a • σε
x↔y−−−→ ∅ • σε

x : 1ỹ • σε[{(yi,x) 7→ ∗}i]
ỹ1x−−→ ∅ • σε

∆, x :⊥y • σ[(x, y) 7→ Ψ]
x⊥y−−−→ ∆ • σ[(x, y) 7→ Ψ · ∗]

∆, x : A`y B • σ[(x, y) 7→ Ψ]
x`y−−−→ ∆, x : B • σ[(x, y) 7→ Ψ ·A]

∆, x : A⊗ỹ B • σ[{(yi, x) 7→ Ai ·Ψi}i]
ỹ⊗x[A,{Ai}i]−−−−−−−−−→ ∆, x : B • σ[{(yi, x) 7→ Ψi}i]

Figure 1: Type-Context Semantics

x↔ y x : a⊥, y : a
Ax

P Γ, [[Ψ]][u∗]x : ·
x().P Γ, [[Ψ]]x : ⊥u ⊥ x[] {[x∗]ui : ·}i, x : 1ũ

1 (ũ 6= ∅)

P Γ, [[Ψ]][uy : A]x : B

x(y).P Γ, [[Ψ]]x : A`u B `
P

{
yi : Ai

}
i
, y : A Q Γ,

{
[[Ψi]]ui : Ai

}
i
, [[Ψ]]x : B

x[y . P].Q Γ,
{

[xyi : Ai][[Ψi]]ui : Ci
}
i
, [[Ψ]]x : A⊗ũ B

⊗ (ũ 6= ∅)

Figure 2: Proof System for Forwarders

∆n+1, σn+1, αn+1 such that ∆n • σn
αn+1−−−→ ∆n+1 • σn+1 and it is live if ∆n = ∅ and σn = σε,

meaning that it progresses without reaching an error.

Definition 1. A context ∆ is multiparty compatible if all maximal paths α1, . . . , αn for ∆ are
live and such that, if αp = ỹ⊗x[A, {Ai}i], then x : A⊥,

{
yi : A⊥

i

}
i

is also multiparty compatible.

Forwarders. To capture multiparty compatibility, forwarders are designed as a subclass of
derivations in classical linear logic that satisfies three conditions: i) anything received must be
forwarded, ii) anything that is forwarded must have been previously received, and iii) the order
of messages between two endpoints must be preserved.

In order to enforce these properties, the logic of forwarders is defined on judgements of the
form P Γ where P is a process and Γ ::= ∅ | Γ, [[Ψ]]x : B | Γ, [[Ψ]]x : · is an extended type
context which associates to each endpoint x a priority queue [[Ψ]] consisting of any yet to process
messages originating from x.

Formally, [[Ψ]] ::= ε | [u∗][[Ψ]] | [uy : A][[Ψ]] where [uy : A] expresses that a new y of type A
has been received and will need to be forwarded later to endpoint u and, similarly, [u∗] indicates
that a request for closing a session has been received and must be forwarded to u.

Forwarders behave asynchronously: the order of messages needing to be forwarded to in-
dependent endpoints is irrelevant unless they originate at the same x. This follows the idea of
having a queue for every ordered pair of endpoints in the type-context semantics above.

Definition 2. A process P is a forwarder for ∆ if the judgement P ∆ is derivable using the
rules reported in Fig. 2.

Correspondence. We can conclude this abstract with the statement of the theorem that
forwarders characterize multiparty compatibility.

Theorem 3. ∆ is multiparty compatible iff there exists a forwarder for ∆, i.e., a process P
such that P ∆.

The proof, as well as more details on forwarders including additives for branching, expo-
nentials to model servers and clients, internal cut-elimination for forwarder composition, and
applications to multiparty communication as multi-cut elimination, can be found in [4].

2

Forwarders as Process Compatibility, Logically M. Carbone, S. Marin, and C. Schürmann

References

[1] Lúıs Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory, and
beyond. In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held
as Part of the 11th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture
Notes in Computer Science, pages 74–95. Springer, 2016.

[2] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
pages 222–236, 2010.

[3] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. Coher-
ence generalises duality: A logical explanation of multiparty session types. In Josée Desharnais
and Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory, CONCUR
2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 33:1–33:15, Germany,
2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[4] Marco Carbone, Sonia Marin, and Carsten Schürmann. Forwarders as process compatibility,
logically. CoRR, abs/2112.07636, 2021.

[5] Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty session
types as coherence proofs. In CONCUR, pages 412–426, 2015.

[6] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating au-
tomata. In Helmut Seidl, editor, Programming Languages and Systems - 21st European Sympo-
sium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings,
volume 7211 of Lecture Notes in Computer Science, pages 194–213. Springer, 2012.

[7] Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise
subtyping for asynchronous multiparty sessions. Proc. ACM Program. Lang., 5(POPL):1–28, 2021.

[8] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP, pages 22–138, 1998.

[9] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008.

[10] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
JACM, 63(1):9, 2016. Also: POPL, 2008, pages 273–284.

[11] Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating session
automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I,
volume 11561 of Lecture Notes in Computer Science, pages 97–117. Springer, 2019.

[12] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, September 1992.

[13] Philip Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012.

[14] Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2–3):384–418,
2014. Also: ICFP, pages 273–286, 2012.

3

