A Simple Concurrent Lambda Calculus for Session Types

Jules Jacobs

Radboud University Nijmegen, mail@julesjacobs.com

Abstract

We introduce \(\mu \text{GV} \) (“micro GV”), which strives to be a minimal extension of linear \(\lambda \)-calculus with concurrent communication, adding only a new \texttt{fork} construct for spawning threads. The child and parent thread communicate with each other via two dual values of linear function type \(\tau_1 \rightarrow^\text{lin} \tau_2 \) and \(\tau_2 \rightarrow^\text{lin} \tau_1 \). Using only \texttt{fork}, we can implement all of GV’s channel operations and session types as a library in \(\mu \text{GV} \). The linear type system ensures that \(\mu \text{GV} \) programs are deadlock-free and satisfy global progress, which we prove in Coq.

Session types [7, 6] for communication channels can be used to verify that programs follow the protocol specified by a channel’s session type. Gay and Vasconcelos [5] embed session types in a linear \(\lambda \)-calculus with concurrency and channels, and Wadler’s subsequent GV [13] and its derivatives [10, 11, 12, 4, 3] guarantee that all well-typed programs are deadlock free.

To add session types to linear \(\lambda \)-calculus, one adds session type formers and their corresponding channel operations: \(!\tau.s \) (send a message of type \(\tau \), continue with protocol \(s \)), \(?\tau.s \) (receive a message of type \(\tau \), continue with \(s \)), \(s_1 \oplus s_2 \) (send choice between \(s_1 \) and \(s_2 \)), \(s_1 \&(s_2 \) (receive choice between \(s_1 \) and \(s_2 \)), and \texttt{End} (close channel). An example is \(!\tau_1.(?\tau_2.\texttt{End} \oplus !\tau_3.\texttt{End}) \): send a value of type \(\tau_1 \) then either receive \(\tau_2 \) or send \(\tau_3 \). One adds \texttt{fork} for creating a thread and a pair of dual channel endpoints for communication between the parent and child thread. For this, one needs a definition of duality, with \texttt{!} dual to \texttt{?}, \(\oplus \) dual to \(\& \), and \texttt{End} dual to itself.

\(\mu \text{GV} \), on the other hand, has none of these. Instead, we add only a single construct: \texttt{fork}.

\[
\texttt{fork} : ((\tau_1 \rightarrow^\text{lin} \tau_2) \rightarrow (\tau_2 \rightarrow^\text{lin} \tau_1))
\]

\(\mu \text{GV} \) adds no new type formers, and no explicit definition of duality. Instead, we re-use the linear function type \(\tau_1 \rightarrow^\text{lin} \tau_2 \) for communication between threads. Let us look at an example:

\[
\texttt{let } c = (\texttt{fork}(\lambda c'. \texttt{print}(c' \ 1))) \ \texttt{in } \texttt{print}(1 + c \ 0)
\]

This program forks off a new thread and creates communication barriers \(c \) and \(c' \) to communicate between the threads. The barrier \(c \) gets returned to the main thread, and \(c' \) gets passed to the child thread. A call to a barrier will block until the other side is also trying to synchronize, and will then exchange the values passed as an argument: when \(c' \) is called, it will block until \(c \) is also called, and vice versa. The call \(c' \) will then return \(0 \), and the call \(c \) will return \(1 \). Thus, the program will print \(0 \ 2 \) or \(2 \ 0 \), depending on which thread prints first. Using a tiny channel library, we can write message passing programs:

\[
\begin{align*}
\texttt{send}(c, x) &\triangleq \texttt{fork}(\lambda c'. \ c(c', x)) & \texttt{receive}(c) &\triangleq c() & \texttt{close}(c) &\triangleq c()
\end{align*}
\]

\[
\begin{align*}
\texttt{let } x_1 &= \texttt{fork}(\lambda x'. \ c(x')) & \texttt{receive}(c) &= c() & \texttt{close}(c) &= c()
\end{align*}
\]

\[
\begin{align*}
\texttt{let } x_1 &= \texttt{fork}(\lambda x'. \ c(x')) & \texttt{receive}(c) &= c() & \texttt{close}(c) &= c()
\end{align*}
\]

\[
\begin{align*}
\texttt{let } x_2 &= \texttt{send}(x_1, 1) & \texttt{send message } 1
\end{align*}
\]

\[
\begin{align*}
\texttt{let } x_3 &= \texttt{send}(x_2, 2) & \texttt{send message } 2
\end{align*}
\]

\[
\begin{align*}
\texttt{let } x_4 &= \texttt{receive}(x_3) & \texttt{receive } n &= 1 + 2
\end{align*}
\]

\[
\begin{align*}
\texttt{print}(n) &\texttt{ close}(x_4)
\end{align*}
\]
A Simple Concurrent Lambda Calculus for Encoding Session types

Jules Jacobs

μGV expressions and types

\begin{align*}
e \in \text{Expr} & \coloneqq \ x \mid () \mid (e,e) \mid \text{in}_L(e) \mid \text{in}_R(e) \mid \lambda x. \ e \mid e \ e \mid \text{fork}(e) \\
\text{let } (x_1, x_2) & = e \text{ in } e \mid \text{match } e \text{ with } \ldots \text{ end}
\end{align*}

$\tau \in \text{Type} \coloneqq 0 \mid 1 \mid \tau \times \tau \mid \tau \oplus \tau \mid \tau \text{ lin} \rightarrow \tau \mid \tau \text{ unr} \rightarrow \tau \mid \mu x. \tau \mid x$

Session types duality

\begin{align*}
\text{End} & \triangleq \text{End} \\
!\tau.s & \triangleq ?\tau.\overline{s} \\
?\tau.s & \triangleq !\tau.\overline{s} \\
\overline{s_1} \oplus \overline{s_2} & \triangleq \overline{s_1 \land s_2} \\
\overline{s_1} \land \overline{s_2} & \triangleq \overline{s_1 \land s_2}
\end{align*}

Encoding session types in μGV

\begin{align*}
\text{End} & \triangleq 1 \text{ lin} \rightarrow 1 \\
!\tau.s & \triangleq s \times \tau \text{ lin} \rightarrow 1 \\
?\tau.s & \triangleq 1 \text{ lin} \rightarrow s \times \tau \\
\overline{s_1} \oplus \overline{s_2} & \triangleq s_1 + s_2 \text{ lin} \rightarrow 1 \\
\overline{s_1} \land \overline{s_2} & \triangleq \text{ lin} \rightarrow s_1 + s_2
\end{align*}

Channel operations

<table>
<thead>
<tr>
<th>Channel operations</th>
<th>Encoding channel operations in μGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>fork : $(s \text{ lin} \rightarrow 1) \rightarrow \overline{s}$</td>
<td>fork$(x) \triangleq \text{fork}(x)$</td>
</tr>
<tr>
<td>close : End \rightarrow 1</td>
<td>close$(c) \triangleq c()$</td>
</tr>
<tr>
<td>send : $!\tau.s \times \tau \rightarrow s$</td>
<td>send$(c, x) \triangleq \text{fork}(\lambda c'. c (c', x))$</td>
</tr>
<tr>
<td>receive : $?\tau.s \rightarrow s \times \tau$</td>
<td>receive$(c) \triangleq c()$</td>
</tr>
<tr>
<td>tell$_L : s_1 \oplus s_2 \rightarrow s_1$</td>
<td>tell$_L(c) \triangleq \text{fork}(\lambda c'. c \text{ in}_L(c'))$</td>
</tr>
<tr>
<td>tell$_R : s_1 \oplus s_2 \rightarrow s_2$</td>
<td>tell$_R(c) \triangleq \text{fork}(\lambda c'. c \text{ in}_R(c'))$</td>
</tr>
<tr>
<td>ask : $s_1 \land s_2 \rightarrow s_1 + s_2$</td>
<td>ask$(c) \triangleq c()$</td>
</tr>
</tbody>
</table>

Figure 1: The μGV language (top), session types (left) and their encoding in μGV (right).

As in GV, our channels are used in functional style: each channel operation returns a new channel. This channel will have a new type, reflecting the step in the protocol. In fact, GV’s session types (including choice) can be encoded in terms of μGV’s types, so that our channel library can be given a statically session-typed interface (see Figure 1). Recursive sessions can be encoded with recursive μGV types.

Like GV, all well-typed μGV programs are automatically deadlock free, and therefore satisfy global progress. We prove this property in Coq. Because of μGV’s simplicity, these proofs are simpler and shorter than previous (mechanized) proofs for deadlock freedom of session types [8], even when counting the encoding of session types into μGV (1442 lines vs 2796 lines).

There have been other efforts for simpler systems, such as an encoding of session types into π-calculus types [2], and minimal session types [1], which decompose multi-step session types into single-step session types in a π-calculus (single-shot synchronization primitives have also been used in the implementation of a session-typed channel library for Haskell [9]).

I hope that μGV shows that linear λ-calculus also provides a good substrate for a minimalist concurrent calculus, with communication primitives that capitalize on the fact that the quintessential linear λ-calculus type, the linear function type $\tau_1 \text{ lin} \rightarrow \tau_2$, is a self-dual connective.
References