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Introduction. The class of pure type systems was introduced by Terlouw [11] and Berardi [4]
(and further developed by Barendregt [1, 2]) as a natural generalization of the lambda cube;
it contains the lambda cube as well as systems with richer sort structure and quantification.
Formally, a pure type system (PTS) λS is specified by a set of sorts S, a set of axioms A
satisfying A ⊂ S×S and a set of rules R satisfying R ⊂ S×S×S, and has the same derivation
rules as those given for the lambda cube except in the case of axioms and Π-type formation,
which are replaced respectively with the following:

⊢λS s1 : s2
Γ ⊢λS A : s1 Γ, x : A ⊢λS B : s2

Γ ⊢λS ΠxAB : s3

where (s1, s2) ∈ A and (s1, s2, s3) ∈ R.

The study of pure type systems can be viewed as the study of how sort structure affects
the meta-theoretic properties of a type system, especially because of the minimal set of type
formers (e.g., there are no Σ-types by default). One such meta-theoretic property, arguably one
of the most important, is normalization. A type system is weakly normalizing if every typable
term has a normal form and is strongly normalizing if no typable term appears in an infinite
reduction sequence. Girard [6] demonstrated that sort structure can have a nontrivial effect
on the normalization behavior of a type system by showing that the PTS λU is not strongly
normalizing. In particular, circularity in the sort structure of a pure type system (λU does
not explicitly include an axiom of the form “Type is a Type”) is not a necessary condition for
non-normalization. This leaves open a fundamental question: what is the relationship between
the sort structure and normalization?

The last few decades have seen numerous techniques for proving normalization of systems
in the lambda cube and their extensions, and some of these techniques have been extended to
the PTS setting (e.g., Melliès and Werner [9] extend the notion of Λ-sets to pure type systems)
but many have not. The purpose of this abstract is to outline the generalization of one such
technique, which might be called dependency eliminating translations.

Contributions. One approach for proving strong normalization of a type system is to define
a typability-preserving infinite-reduction-path-preserving translation from that system into a
weaker system which is already known to be strongly normalizing. Harper et al. [7] define
such a translation from λP to λ→ and Geuvers and Nederhof [5] extend that translation to
one from λC to λω. Both of these translations can be viewed as deleting the dependent rule
in the corresponding system, i.e., the rule (∗,□), which allows types to depend on terms. For
sufficiently well-structured pure type systems, this notion of dependence can be generalized, as
is done by Barthe et al. [3] for their definition of generalized non-dependent pure type systems.
I extend these translations to pure type systems in a way that maintains the property that
dependent rules are deleted.
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Before stating the following theorem, a few definitions. A PTS is n-tiered if it is of the form

S = {si | i ∈ [n]}
A = {(si, si+1) | i ∈ [n− 1]}
R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}

A tiered PTS is (i, j)-full if its rules contain {(sl, sk, sk) | l ≤ i and l ≤ k ≤ j} and is full if it
satisfies the following closure property: if (si, sj , sj) ∈ RλS then λS is (j, i)-full. For any tiered
PTS λS, define its non-dependent restriction, denoted λS∗, to be the tiered system with rules
{(si, sj , sj) ∈ RλS | i ≤ j}.

Theorem 1. For any full tiered PTS λS, there are two functions τ : T → T and J−K : T → T
on terms such that the following hold.

1. If Γ ⊢λS A : B then there is a context Γ′ such that Γ′ ⊢λS∗ JAK : τ(B). That is, J−K
preserves typability.

2. For any term A derivable in λS, if A ↠β B, then JAK ↠+
β JBK. That is, J−K preserves

infinite reduction paths.

This implies the strong normalization of any full tiered PTS depends only on the strong
normalization of its non-dependent restriction. Unfortunately, fullness is a very strong property.
A system which is (i, j)-full where i ≥ 2 and j ≥ 3, for example, contains λU and is thus
inconsistent. There is only a small class of systems on which the translation can be applied
non-trivially, and every system in this class is a subsystems of Lou’s extended calculus of
constructions (ECC) [8], which is known to be strongly normalizing. The strongest of these full
n-tiered system has the rules

{(sk, s1, s1) | k ∈ [n]} ∪ {(s1, sk, sk) | k ∈ [n]} ∪ {(s2, sk, sk) | k ∈ [n]}

Together with a proof that the non-dependent restriction of this system is strongly normalizing,
we get a modular proof that this system is strongly normalizing along the lines of the Geuvers-
Nederhof result. In particular, this proof does not require a detour through quasi-normalization
(as is done by Luo for ECC) and the system for which one ultimately has to prove strong
normalization after translation (by, say, the Girard-Tait method) is simpler.

Discussion. The restriction to tiered systems is for convenience, and it turns out to be sufficient
even if we want to consider more general classes along the lines of persistent, stratified systems
(see [3]) because such systems can be viewed as disjoint unions of tiered systems, in the sense
of [10]. However, the restriction of fullness is clearly quite limiting. The generalization is, I
believe, a fairly faithful one, so it seems possible that a more sophisticated translation could
push this idea further. Being able to handle even just one additional non-dependent rule could
be advantageous. For example, I became interested in translations like this one because of their
potential application to the Barendregt-Guevers-Klop conjecture, an open question which posits
that weak normalization implies strong normalization for all pure types systems. Barthe et al.
[3] prove the conjecture holds for a class of non-dependent pure types systems via a CPS-style
translation. If the non-dependent restriction of a tiered PTS is captured by the conditions of
their theorem then their result can be leveraged and extended by a very simple bootstrapping
argument: since weak normalization of λS implies weak normalization of λS∗, if λS is weakly
normalizing then, in fact, λS∗ is strongly normalizing, which implies λS is as well.
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