Small inversions for smaller inversions

Jean-François MONIN
Inversion, simple example

Even natural numbers

Inductive even : \(\forall\) \(n\), Prop :=

| Ev0 : even 0 |
| Ev2 \(n\) : even \(n\) \(\rightarrow\) even \((S\ (S\ n))\).

Basic usage

Lemma even_plus_left \(n\ \ m\) : even \(n\) \(\rightarrow\) even \((n\ +\ m)\) \(\rightarrow\) even \(m\).

IH\(en\) : even \((n\ +\ m)\) \(\rightarrow\) even \(m\)

en\(m\) : even \((S\ (S\ (n\ +\ m)))\)

==================================
even \(m\)
Inversion

Purpose
Extract the information contained in a hypothesis H of type T
- where T is an inductive relation
- with some arguments having an inductive type

Expectations
- For each case (constructor), decompose H into ALL its components
- In particular, remove irrelevant cases

Essentially : (subtle) case analysis on H
- *Simultaneous* case analysis on H and its arguments
- game on dependent pattern-matching
Smaller inversion (part of the Braga method)

Joint work with Dominique Larchey Wendling [TYPES’18], [Proof&Computation II 2021]

Half of even numbers

Fixpoint half n (e: even n) {struct e} : nat :=
 match n return even n → nat with
 | 0 => λ _, 0
 | 1 => λ e, match even_inv e with end
 | S (S n) => λ e, S (half n (πeven e))
end e.

Projection: getting ONE STRUCTURALLY SMALLER component

Definition πeven n (e: even (S (S n))) : even n :=
 match e in even m return
 let n := match m with S (S n) => n | _ => n end in
 let G := match m with S (S n) => True | _ => False end in G → even n
 with
 | Ev2 n e => λ _, e
 | _ => λ G, match G with end
end I.
Easy (induction on e)

Lemma double_half : \(\forall n e, \text{half} n e + \text{half} n e = n \).

Less easy: induction on e and inversion on e'

Lemma half_pirr : \(\forall n (e e' : \text{even} n), \text{half} n e = \text{half} n e' \).

e : \text{even} n
e' : \text{even} (S (S n))

S (half n e) = half (S (S n)) e'

Unicity of e

Again: induction on e and inversion on e’

Lemma even_unique : \(\forall n \) (e e’ : even n), e = e’.

But proof unicity should not be overrated here

- The returned result (sort Set/Type) cannot depend on an argument of sort Prop
- Simple example: unbounded linear search algorithm (see ConstructiveEpsilon.v in the std lib)
More sophisticated inversions

- Even bounded natural numbers
- Half of even bounded natural numbers
- Proof unicity for $=$ and \leq in nat

Bounded natural numbers

Inductive $t : \text{nat} \rightarrow \text{Set} :=$

| FO $\{n\} : t (S \ n)$
| FS $\{n\} : t \ n \rightarrow t \ (S \ n)$.

Failures for standard inversion.
Inversion technologies

Standard tactic of Coq: fully automated [Cornes & Terrasse, 1995 ; Murthy?]
- Improved over the years, very impressive black box
- lack of control
- big underlying terms
- failures with dependent inductive types

Small inversions: handcrafted [Monin 2010, Monin & Shi 2013]
- Flexible approach with several variants
- Developed for a big experiment with CompCert
- Attempts towards automation (Braibant, Boutillier)

TYPES’2022
- More user-friendly using auxiliary inductive types
- Improvement for dependent types/functions (including projections)
Given an inductive relation \(\text{rel} : T_x \to Ty_1 \to \ldots \text{ Prop} \) with “input” argument \(x : T_x \), define:

- For each input case (constructor \(C \)) in \(T_x \), an \textit{auxiliary inductive relation} of type \(Ty_1 \to \ldots \text{ Prop} \) by copy and paste of relevant telescopes of \(\text{rel} \)
- \textit{No recursion}

- A \textit{dispatch function} \(\text{rel_disp} \) from \(x : T_x \) to \(Ty_1 \to \ldots \text{ Prop} \) by pattern matching on \(x \)

- Inversion lemma \(\text{rel_inv} : \text{rel} \to \text{rel_disp} \) (easy proof)

Usage

- Given a hypothesis \(R : \text{rel} (C\ldots) \text{ expr_1\ldots} \)
 perform \texttt{match rel_inv R with...}
- Boils down to the relevant \textit{aux. inductive relation} corresponding to (C\ldots)
Small inversions with auxiliary inductive types

Recipe

Given an inductive relation \(\text{rel} : T_x \to T_{y1} \to \ldots \ \text{Prop} \)
with “input” argument \(x : T_x \), define:

- For each input case (constructor \(C \)) in \(T_x \),
 an auxiliary inductive relation of type \(T_{y1} \to \ldots \ \text{Prop} \)
 by copy and paste of relevant telescopes of \(\text{rel} \)
 No recursion

- A dispatch function \(\text{rel_disp} \) from \(x : T_x \) to \(T_{y1} \to \ldots \ \text{Prop} \)
 by pattern matching on \(x \)

- Inversion lemma \(\text{rel_inv} : \text{rel} \to \text{rel_disp} \) (easy proof)

Usage

- Given a hypothesis \(R : \text{rel} (C \ldots) \) \(\text{expr}_1 \ldots \)
 perform \(\text{match \ rel_inv} \ R \ \text{with} \ldots \)

- Boils down to the relevant aux. inductive relation corresponding to \((C \ldots) \)
Explicit injectivity

When R occurs as an argument in the goal we need also the left inverse rel_back of rel_inv (trivial as well), and a proof of $R = \text{rel_back} (\text{rel_inv} R)$.

Then rewrite the occurrences of R with $\text{rel_back} (\text{rel_inv} R)$ before the pattern-matching on $\text{rel_inv} R$.

Improvement: built-in injectivity

- In the previous recipe, *add a last argument of shape C*...
- *Same code* for rel_disp and rel_inv
- *Bonus*: inline rel_disp in the statement of rel_inv
Basic small inversion on even [2021 talks]

Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv {n} (e : even n) :
 match n return Prop with
 | 0 => even0
 | 1 => even1
 | S (S n) => even2 n
end.
Proof. destruct e; constructor; assumption. Defined.

Definition even_back n (e : match n return Prop with...) : even n.
Proof... Defined.

Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv {n} (e : even n) :
 match n return Prop with
 | 0 => even0
 | 1 => even1
 | S (S n) => even2 n
 end.
Proof. destruct e; constructor; assumption. Defined.

Definition even_back n (e : match n return Prop with...) : even n.
Proof... Defined.

Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
Basic small inversion on even [2021 talks]

Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv {n} (e : even n) :
 match n return Prop with
 | 0 => even0
 | 1 => even1
 | S (S n) => even2 n
end.
Proof. destruct e; constructor; assumption. Defined.

Definition even_back n (e : match n return Prop with...) : even n.
Proof... Defined.

Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
Improved small inversion on even with built-in injectivity

Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive is_Ev0 : even 0 → Prop := is_Ev0_intro : is_Ev0 Ev0.
Inductive no_Ev1 : even 1 → Prop :=.
Inductive is_Ev2 n : even (S (S n)) → Prop :=
 is_Ev2_intro : ∀ (e : even n), is_Ev2 n (Ev2 n e).

Definition even_inv {n} (e : even n) :
 match n return even n → Prop with
 | 0 => is_Ev0
 | 1 => no_Ev1
 | S (S n) => is_Ev2 n
 end e.

Proof. destruct e; constructor. Defined.

(* Basic version *)
Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.
Exercise: equality in nat with obvious UP

Inductive diag : nat → nat → Prop :=
| dia0 : diag 0 0
| diaS x y : diag x y → diag (S x) (S y).

(* Small inversion : standard injective receipe *)
Inductive is_dia0 : diag 0 0 → Prop := ii00 : is_dia0 dia0.
Inductive is_diaS x y : diag (S x) (S y) → Prop :=
 iiSS : ∀ (d : diag x y), is_diaS x y (diaS x y d).
Inductive no_diag x y : diag x y → Prop := .

Definition diag_inv x y (d : diag x y) :
 match x, y return diag x y → Prop with
 | 0, 0 => is_dia0
 | S x, S y => is_diaS x y
 | x, y => no_diag x y
end d.
Proof. destruct d; constructor. Qed.
Exercise: equality in nat with obvious UP

Inductive `diag : nat → nat → Prop :=
| `dia0 : `diag 0 0
| `diaS x y : `diag x y → `diag (S x) (S y).

(* Small inversion : standard injective receipe *)
Inductive `is_dia0 : `diag 0 0 → Prop := `ii00 : `is_dia0 `dia0.
Inductive `is_diaS x y : `diag (S x) (S y) → Prop :=
 `iiSS : ∀ (d : `diag x y), `is_diaS x y (diaS x y d).
Inductive `no_dia` x y : `diag x y → Prop := .

Definition `diag_inv x y (d : `diag x y) :
 match x, y return `diag x y → Prop with
 | 0, 0 => `is_dia0
 | S x, S y => `is_diaS x y
 | x, y => `no_dia x y
end d.
Proof. destruct d; constructor. Qed.
Definition diag_refl x : diag x x.
 Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.

Definition eq_diag x y (e : x = y) : diag x y.
 Proof. case e. apply diag_refl. Defined.

Definition diag_back x :
 ∀ y, diag x y → x = y.
Proof. induction x; destruct y; intro d; destruct (diag_inv d);
 [reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma diag_back_isrefl x :
 ∀ (d : diag x x), eq_refl = diag_back d.
Proof. induction x as [| x IHx]; simpl; intro d; destruct (diag_inv d);
 [reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma diag_mono x y (e : x = y) : e = diag_back (eq_diag e).
Proof. destruct e; destruct x as [| x]; simpl.
 + destruct (diag_inv dia0); reflexivity.
 + destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
Qed.

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.
Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
Simple explicit UIP in nat

Definition diag_refl x : diag x x.
 Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.

Definition eq_diag x y (e : x = y) : diag x y.
 Proof. case e. apply diag_refl. Defined.

Definition diag_back x :
 ∀ y, diag x y → x = y.
Proof. induction x; destruct y; intro d; destruct (diag_inv d);
 [reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma diag_back_isrefl x :
 ∀ (d : diag x x), eq_refl = diag_back d.
Proof. induction x as [| x IHx]; simpl; intro d; destruct (diag_inv d);
 [reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma diag_mono x y (e : x = y) : e = diag_back (eq_diag e).
Proof. destruct e; destruct x as [| x]; simpl.
 + destruct (diag_inv dia0); reflexivity.
 + destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
Qed.

Corollary UIP_nat (x : nat) (e : x = x) : eq_refl = e.
Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
Definition diag_refl x : diag x x.
 Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.

Definition eq_diag x y (e : x = y) : diag x y.
 Proof. case e. apply diag_refl. Defined.

Definition diag_back x : \(\forall y, \text{diag } x y \rightarrow x = y \).
 Proof. induction x; destruct y; intro d; destruct (diag_inv d);
 [reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma diag_back_isrefl x : \(\forall (d : \text{diag } x x), \text{eq_refl } = \text{diag_back } d \).
 Proof. induction x as [| x IHx]; simpl; intro d; destruct (diag_inv d);
 [reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma diag_mono x y (e : x = y) : e = diag_back (eq_diag e).
 Proof. destruct e; destruct x as [| x]; simpl.
 + destruct (diag_inv dia0); reflexivity.
 + destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
 Qed.

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.
 Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
Definition \texttt{diag_refl} \(x : \text{diag} \ x \ x. \)
Proof. induction \(x \) as [| \(x \) \(\text{IH}_x \)]; constructor. apply \(\text{IH}_x \). Defined.

Definition \texttt{eq_diag} \(x \ y \ e : x = y \) : \text{diag} \(x \ y. \)
Proof. case \(e \). apply \text{diag_refl}. Defined.

Definition \texttt{diag_back} \(x \) : \(\forall \ y, \text{diag} \ x \ y \rightarrow x = y. \)
Proof. induction \(x \); destruct \(y \); intro \(d \); destruct \(\text{diag_inv} \(d \)\);
[reflexivity | apply \text{f_equal}, \(\text{IH}_x \ d \)]. Defined.

Lemma \texttt{diag_back_isrefl} \(x \) : \(\forall \ (d : \text{diag} \ x \ x), \text{eq_refl} = \text{diag_back} \ d. \)
Proof. induction \(x \) as [| \(x \) \(\text{IH}_x \)]; simpl; intro \(d \); destruct \(\text{diag_inv} \(d \)\);
[reflexivity | case \(\text{IH}_x \ d \). cbn. reflexivity]. Qed.

Lemma \texttt{diag_mono} \(x \ y \ e : x = y \) : \(e = \text{diag_back} \ (\text{eq_diag} \ e). \)
Proof. destruct \(e \); destruct \(x \) as [| \(x \)]; simpl.
+ destruct \(\text{diag_inv} \ (\text{dia0}) \); reflexivity.
+ destruct \(\text{diag_inv} \ (\text{diaS} x x \ \text{diag_refl}) \) as [d]. case \(\text{diag_back_isrefl} \ d \); reflexivity.
Qed.

Corollary \texttt{UIP_nat} \(x : \text{nat} \) (e : x = x) : eq_refl = e.
Proof. rewrite \(\text{diag_mono} \ e \). apply \text{diag_back_isrefl}. Qed.
Horribly simpler proof of UIP in nat along the same scheme...

Fixpoint diagTF (x y : nat) : Prop :=
 match x, y with
 | 0, 0 => True
 | S x, S y => diagTF x y
 | _, _ => False
 end.

Definition diagTF_refl x : diagTF x x :=...

Definition eq_diagTF x y (e : x = y) : diagTF x y :=...

Definition diagTF_back x : ∀ y, diagTF x y → x = y :=...

Lemma diagTF_back_isrefl x : ∀ (d : diagTF x x), eq_refl = diagTF_back d.

Lemma diagTF_mono x y (e : x = y) : e = diagTF_back (eq_diagTF e).

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.
Proof. rewrite (diagTF_mono e). apply diagTF_back_isrefl. Qed.

... without diag and its inversion :(
Equality is too easy, what about \leq?

Inversion performed “as if” \leq was defined as

$$
\text{Inductive } \text{le } n : \text{nat } \rightarrow \text{Prop } := \\
| \text{le}_\text{e}_0 : n = 0 \rightarrow n \leq 0 \\
| \text{le}_\text{e}_\text{S} m : n = \text{S} m \rightarrow n \leq \text{S} m \\
| \text{le}_\text{S} m : n \leq m \rightarrow n \leq \text{S} m.
$$

Definition $\text{eq}_\text{le } n m (e : n = m) : n \leq m :=$

match e with $\text{eq}_\text{refl } \Rightarrow \text{le}_n n \text{ end }.$

$$
\text{Inductive } \text{le}_\text{0 } [n] : n \leq 0 \rightarrow \text{Prop } := \\
| \text{le}_\text{0}_\text{e} : \forall e, \text{le}_\text{0 } (\text{eq}_\text{le } e).
$$

$$
\text{Inductive } \text{le}_\text{Sm } [m n] : n \leq \text{S} m \rightarrow \text{Prop } := \\
| \text{le}_\text{Sm}_\text{e} : \forall e, \text{le}_\text{Sm } (\text{eq}_\text{le } e) \\
| \text{le}_\text{Sm}_\text{S} : \forall l, \text{le}_\text{Sm } (\text{le}_\text{S } n m l).
$$

Lemma $\text{le}_\text{inv } n m (l : n \leq m) :$

match m with
| 0 \Rightarrow le_0
| $\text{S} m$ \Rightarrow $\text{le}_\text{Sm } m$
end $n l$.

J-F. Monin
small inversions
20-23 June 2022
16 / 18
Equality is too easy, what about \leq?

Inversion performed “as if” \leq was defined as

Inductive le n : nat \to Prop :=
| le_e_0 : n = 0 \to n \leq O
| le_e_S m : n = S m \to n \leq S m
| le_S m : n \leq m \to n \leq S m.

Definition eq_le n m (e : n = m) : n \leq m :=
match e with eq_refl \Rightarrow le_n n end.

Inductive le_0 [n] : n \leq 0 \to Prop :=
| le_0_e : \forall e, le_0 (eq_le e).

Inductive le_Sm [m n] : n \leq S m \to Prop :=
| le_Sm_e : \forall e, le_Sm (eq_le e)
| le_Sm_S : \forall l, le_Sm (le_S n m l).

Lemma le_inv n m (l : n \leq m) :
match m with
| O \Rightarrow le_0
| S m \Rightarrow @le_Sm m
end n l.
Lemma eq_is_le_n n (e : n = n) : le_n n n = eq_le e.
Proof. rewrite (UIP_refl_nat n e). reflexivity. Qed.

Lemma lenn_unique {n} (l : n ≤ n) : le_n n n = l.
Proof. destruct n; destruct (le_inv l); try apply eq_is_le_n. case (lt_irrefl _ l).
Qed.

Inductive is_le_S {n m} : n ≤ S m → Prop :=
| is_le_S_intro : ∀ l, is_le_S (le_S n m l).

Lemma leS_is_le_S {n m} (lS : n ≤ S m) : n ≤ m → is_le_S lS.
Proof. destruct (le_inv lS) as [e | ll]; intro l; try constructor.
exfalso; rewrite e in l; apply (lt_irrefl _ l).
Qed.

Fixpoint le_unique {n m} (p : n ≤ m) : ∀ q, p = q.
Proof.
destruct p as [| m p]; intro q; cbn.
- destruct (lenn_unique q); reflexivity.
- destruct (leS_is_le_S q p). apply f_equal, le_unique.
Qed.
The Braga method

Dominique Larchey-Wendling and Jean-François Monin.

In Klaus Mainzer, Peter Schuster, and Helmut Schwichtenberg, editors.

Proof and Computation II: From Proof Theory and Univalent Mathematics to Program Extraction and Verification.

Small inversions

http://home/jf/www/Proof/Small_inversions/2022/