A Flexible Type Checker For Modal Type Theories

Philipp Stassen Daniel Gratzer Lars Birkedal
January 22nd 2022

Aarhus University
Modalities in Computer Science

Modalities provide abstraction for programming languages

- Information Flow [Kav19]
- Distributed Systems
- Synchronous Programming [Gua18]
- Coinductive Data Types [Clo+15]

as well as reasoning principles in mathematics

- Axiomatic Cohesion [Shu18]
- Guarded Recursion [Nak00]
- Monads/Comonads/Adjunctions
MTT — a machine that produces modal type theories

MTT takes as input a description of the modal situation – a mode theory – and produces a modal type theory

Importantly, MTT has a well developed meta-theory. In particular:

- MTT is sound [Gra+20]
- there is a normalization algorithm for MTT [Gra21]
- MTT enjoys canonicity. [Gra21]

Judiciously chosen mode theories recover some of the prior examples.
We contribute mitten, a prototype implementation of MTT. Like MTT, mitten easily adapts to different modal situations.

Concretely, we developed and implemented

1. A normalization algorithm for MTT
2. A bidirectional type checking algorithm for MTT
Without a concrete mode theory, MTT is not a type theory and mitten not a type checker.

An implementation of a mode theory completes mitten

One has to implement a structure to describe the mode theory:

1. Abstract type of modalities
2. Preorder and equality relation defined on modalities
Example: Guarded Recursion – implementation

Instantiating MTT with the modalities

\[
\text{type modality} = \\
\uparrow \downarrow \Box \downarrow \uparrow \downarrow \downarrow \text{id} \circ (\circ) \text{ of modality } \ast \text{ modality}
\]

and predicates

\[
(\equiv) : \text{modality } \times \text{ modality} \to \text{ bool} \\
(\leq) : \text{modality } \times \text{ modality} \to \text{ bool}
\]

allows us to formalize guarded recursion.
Mode Theory Implementations

- This code is both necessary and sufficient: the general word problem for mode theories is undecidable!
- Equality for MTT is decidable iff the mode theory is
- **In practice:** Implementing a mode theory requires relatively few lines of code.
Normalization

- Normalization for MTT has been proven by Gratzer [Gra21].

- Although the proof is constructive, it is not clear how to extract an algorithm.

- Restricting the mode theories allowed us to implement an algorithm based on normalization-by-evaluation [Abe13].

- A weak-head normal form algorithm seems more promising.
At this point, we utilize the entire ML-signature of the mode theory:

1. Equality of terms uses normalization and equality of modalities
2. At every stage, we carefully check modes and modalities
3. We use \leq to validate the correct usage of variables.
We implemented an adjustable type checker

Flexible The underlying normalization algorithm and type checker do not depend on specifics of the modalities

Expressive MTT extends MLTT (cubical variants already exist).

Simple Implementing a type checker is reduced to a simpler problem.
Going forward

• Generalize mitten
• Make it usable by integrating this technique into a mainstream proof assistant.
• Can we identify good class of decidable mode theories?
Thanks

Thanks to the organizers and all participants! 😊

Github

https://github.com/logsem/mitten_preorder
Input

```ocaml
let next : (A : U<0>) -> A -> << l | A >> @ T =
  fun A -> fun x -> mod l x

normalize next Nat 2 at << l | Nat >> @ T
```

Output

Computed normal form of

```
(ap () (ap () next Nat) 2)
```

as

```
(mod (l) 2)
```