More on modal embeddings and calling paradigms

José Espírito Santo1 \hspace{1cm} Luís Pinto1 \hspace{1cm} Tarmo Uustalu2

1University of Minho
2Reykjavik University and Tallinn University of Technology

TYPES 2022
Nantes, 23 June 2022
Overview of the talk

1. Introduction and recap of calling paradigms
2. Modal target and embeddings
3. More on embeddings and paradigms
Modal embeddings

From Troelstra-Schwichtenberg, “Basic Proof Theory”

9.2 Embedding intuitionistic logic into S4

9.2.1. DEFINITION. (The modal embedding). The embedding exists in several variants. We describe a variant \circ, and a more familiar variant \Box. The definition is by induction on the depth of formulas (P atomic, not \bot):

\begin{align*}
P^\circ & := P \\
\bot^\circ & := \bot \\
(A \land B)^\circ & := A^\circ \land B^\circ \\
(A \lor B)^\circ & := \Box A^\circ \lor \Box B^\circ \\
(A \rightarrow B)^\circ & := \Box A^\circ \rightarrow B^\circ \\
(\exists x A)^\circ & := \exists x A^\circ \\
(\forall x A)^\circ & := \forall x A^\circ
\end{align*}

9.2.2. PROPOSITION. The two versions of the modal embedding are equivalent in the following sense: $S4 \vdash \Box A^\circ \iff A^\circ$ and hence $S4 \vdash \Box \Gamma^\circ \rightarrow A^\circ$.

9.2.3. A (remarkable) fact is that, if Γ° is a consistent set of formulas, then $\Gamma^\circ \cup \{A^\circ\}$ is also consistent.

9.2.4. A (remarkable) fact is that, if Γ° is a consistent set of formulas, then $\Gamma^\circ \cup \{A^\circ\}$ is also consistent.

9.2.5. A (remarkable) fact is that, if Γ° is a consistent set of formulas, then $\Gamma^\circ \cup \{A^\circ\}$ is also consistent.
Calling paradigms

Plotkin, 1975: over the same syntax

- a “programming language” (with notions of value and evaluation)
- a λ-calculus (with notions of reduction and equality)
- the two components linked by a standardization theorem
Calling paradigms

Plotkin, 1975: over the same syntax

- a “programming language” (with notions of value and evaluation)
- a \(\lambda\)-calculus (with notions of reduction and equality)
- the two components linked by a standardization theorem

This is what we call a calling paradigm
Calling paradigms

Plotkin, 1975: over the same syntax

- a “programming language” (with notions of value and evaluation)
- a λ-calculus (with notions of reduction and equality)
- the two components linked by a standardization theorem

This is what we call a calling paradigm

Two examples

- Call-by-value (Plotkin’s λ-calculus)
- Call-by-name (ordinary λ-calculus)
Calling paradigms

Plotkin, 1975: over the same syntax

- a “programming language” (with notions of value and evaluation)
- a λ-calculus (with notions of reduction and equality)
- the two components linked by a standardization theorem

This is what we call a calling paradigm

Two examples

- Call-by-value (Plotkin’s λ-calculus)
- Call-by-name (ordinary λ-calculus)

We will talk about a third one

- Call-by-box
Computational interpretation of the modal embeddings

We consider implication only

- Gödel’s embedding: \(A \supset B \iff \Box A \supset \Box B \)
- Girard’s embedding: \(A \supset B \iff \Box A \supset B \)
We consider implication only

- Gödel’s embedding: $A \supset B \leftrightarrow \Box A \supset \Box B$
- Girard’s embedding: $A \supset B \leftrightarrow \Box A \supset B$

Analogous interpretations into linear logic suggest

- Gödel’s embedding interprets call-by-value
- Girard’s embedding interprets call-by-name
Our approach

- Focus on the interpretation into $S4$
- Identify the modal target appropriate for the interpretation
- Identify the core of the connection embeddings-paradigms
- Later instantiations of the modality are a separate concern
- Decompose other known interpretations as the composition of a modal embedding and some instantiation of the modality
Modal embeddings and later instantiations

\[\lambda_n \quad \text{Girard} \quad \lambda_v \quad \text{Gödel} \]

modal target
Modal embeddings and later instantiations

\[\lambda_n \xrightarrow{\text{Girard}} \text{modal target} \xrightarrow{\text{instantiation}} \text{some system} \]

\[\lambda_v \xrightarrow{\text{Gödel}} \]
Modal embeddings and later instantiations

Several possible instantiations:
Modal embeddings and later instantiations

Several possible instantiations: \(\Box A \rightleftharpoons !A \)
Modal embeddings and later instantiations

Several possible instantiations: $\square A = T \supset A$
Modal embeddings and later instantiations

Several possible instantiations: $\Box A = FUA$
Call-by-name: λ_n

(Terms) \[M, N ::= x \mid \lambda x. M \mid MN \]

(β_n) \[(\lambda x. M)N \rightarrow [N/x]M \]
Call-by-name: λ_n

\[(Terms) \quad M, N ::= x \mid \lambda x. M \mid MN\]

\[(\beta_n) \quad (\lambda x. M)N \rightarrow [N/x]M\]

\[
\begin{align*}
M \rightarrow M' & \quad (\mu) \\
MN \rightarrow M'N
\end{align*}
\]

\[
\begin{align*}
N \rightarrow N' & \quad (\nu) \\
MN \rightarrow MN'
\end{align*}
\]

\[
\begin{align*}
M \rightarrow M' & \quad (\xi) \\
\lambda x. M \rightarrow \lambda x. M'
\end{align*}
\]

Call-by-name reduction and equality: $\rightarrow_{\beta_n}^*$ and $=_{\beta_n}$

\rightarrow_n: β_n closed under μ

Call-by-name evaluation: \rightarrow_n^*
Introduction

Modal-target-embeddings

More on this

Standardization for cbn

Standard reducibility $M \Rightarrow_n N$:

\[
\begin{align*}
& x \Rightarrow_n x & \text{VAR} \\
& \lambda x. M \Rightarrow_n \lambda x. N & \text{ABS} \\
& M \Rightarrow_n M' & N \Rightarrow_n N' & \text{APL}
\end{align*}
\]

\[
\begin{align*}
& M \rightarrow_n^* \lambda x. M' & [N/x] M' \Rightarrow_n P & \text{RDX}
\end{align*}
\]

Standardization theorem: $M \rightarrow_n^* N$ iff $M \Rightarrow_n N$
Call-by-value: λ_v

\[
\begin{align*}
\text{(Terms)} \quad M, N &::= V | MN \\
\text{(Values)} \quad V &::= x | \lambda x. M
\end{align*}
\]

\[
\begin{align*}
(\beta_v) \quad (\lambda x. M) V &\rightarrow [V/x] M \\
(\mu) \quad MN &\rightarrow M'N \\
(\nu_{\text{val}}) \quad VN &\rightarrow VN' \\
(\xi) \quad \lambda x. M &\rightarrow \lambda x. M'
\end{align*}
\]

Call-by-value reduction and equality: $\rightarrow^*_{\beta_v}$ and $=_{\beta_v}$

\rightarrow_v: β_v closed under μ and ν_{val}

Call-by-value evaluation: \rightarrow^*_v
Standard reducibility $M \Rightarrow_v N$:

\[
\begin{align*}
\text{VAR} & \quad M \Rightarrow_v N \\
\lambda x. M & \Rightarrow_v \lambda x. N \\
\text{ABS} & \quad M \Rightarrow_v M' \quad N \Rightarrow_v N' \\
MN & \Rightarrow_v M'N' \\
\text{APL} & \quad M \rightarrow_v^* \lambda x. M' \quad N \rightarrow_v^* V \\
[V / x] M' & \Rightarrow_v P \\
MN & \Rightarrow_v P \\
\text{RDX} & \quad M \rightarrow_v^* N \text{ iff } M \Rightarrow_v N
\end{align*}
\]

Standardization theorem: $M \rightarrow_{v \beta}^* N$ iff $M \Rightarrow_v N$
MODAL TARGET

AND

MODAL EMBEDDINGS
Modal target: the box calculus λ_b

\[M, N ::= \epsilon(x) \mid \lambda x. M \mid MN \mid \text{box}(M) \]

\[(\beta_b) \quad (\lambda x. M)\text{box}(N) \rightarrow [N/\epsilon(x)]M\]
Modal target: the box calculus λ_b

$$M, N ::= \varepsilon(x) \mid \lambda x. M \mid MN \mid \text{box}(M)$$

$$(\beta_b) \ (\lambda x. M)\text{box}(N) \rightarrow [N/\varepsilon(x)]M$$

- Call-by-box reduction: $\rightarrow^{*}_{\beta_b}$
- \rightarrow_{we}: forbid reduction under λ-abstraction and boxes
- Weak and external reduction, or cbb evaluation: \rightarrow^{*}_{we}
Modal target: the box calculus λ_b

$$A ::= X \mid B \supset A \mid B \quad B ::= \Box A$$

Contexts Γ are sets of declarations $x : B$

$$\Gamma, x : \Box A \vdash \varepsilon(x) : A \quad \Gamma \vdash \text{box}(M) : \Box A$$

$$\Gamma, x : B \vdash M : A \quad \Gamma \vdash M : B \supset A \quad \Gamma \vdash N : B$$

$$\Gamma \vdash \lambda x. M : B \supset A \quad \Gamma \vdash MN : A$$
Calling paradigm cbb

Standard reducibility $M \Rightarrow_b N$:

\[
\begin{align*}
\epsilon(x) & \Rightarrow_b \epsilon(x) \quad \text{VAR} \\
\lambda x. M & \Rightarrow_b \lambda x. N \quad \text{ABS} \\
M & \Rightarrow_b M' \quad N & \Rightarrow_b N' \\
MN & \Rightarrow_b M'N' \quad \text{APL} \\
\text{box}(M) & \Rightarrow_b \text{box}(N) \\
M & \rightarrow^{*}_{we} \lambda x. M' \quad N & \rightarrow^{*}_{we} \text{box}(N') \\
MN & \Rightarrow_b [N'/\epsilon(x)]M' \Rightarrow_b P \quad \text{RDX}
\end{align*}
\]
Calling paradigm cbb

Standard reducibility $M \Rightarrow_b N$:

\[
\begin{align*}
\frac{\varepsilon(x) \Rightarrow_b \varepsilon(x)}{\text{VAR}} & \quad \frac{M \Rightarrow_b N}{\lambda x.M \Rightarrow_b \lambda x.N} & \quad \text{ABS} \\
M \Rightarrow_b M' \quad N \Rightarrow_b N' & \quad \frac{MN \Rightarrow_b M'N'}{\text{APL}} & \quad \frac{M \Rightarrow_b N}{\text{box}(M) \Rightarrow_b \text{box}(N)} \quad \text{BOX} \\
M \rightarrow^*_\text{we} \lambda x.M' \quad N \rightarrow^*_\text{we} \text{box}(N') & \quad \frac{\left[N'/\varepsilon(x)\right]M' \Rightarrow_b P}{MN \Rightarrow_b P} \quad \text{RDX}
\end{align*}
\]

Theorem (Standardization for λ_b)

$M \rightarrow^*_\beta_b N$ iff $M \Rightarrow_b N$
Girard’s embedding: \(\lambda_n \rightarrow \lambda_b \)

Translation of formulas

\[
X^\circ = X \\
(A_1 \supset A_2)^\circ = \Box A_1^\circ \supset A_2^\circ
\]

Translation of terms

\[
x^\circ = \varepsilon(x) \\
(\lambda x. M)^\circ = \lambda x. M^\circ \\
(MN)^\circ = M^\circ \text{box}(N^\circ)
\]

Typing

\[
\Gamma \vdash M : A \text{ in } \lambda_n \text{ iff } \Box \Gamma^\circ \vdash M^\circ : A^\circ \text{ in } \lambda_b
\]
Girard’s embedding: $\lambda_n \rightarrow \lambda_b$

Theorem (Properties of Girard’s translation)

1. *(Preservation and reflection of reduction)* $M \rightarrow_{\beta_n} N$ in λ_n iff $M^\circ \rightarrow_{\beta_b} N^\circ$ in λ_b.

2. *(Preservation and reflection of evaluation)* $M \rightarrow_n N$ in λ_n iff $M^\circ \rightarrow_{we} N^\circ$ in λ_b.

3. *(Preservation and reflection of standard reduction)* $M \Rightarrow_n N$ in λ_n iff $M^\circ \Rightarrow_b N^\circ$ in λ_b.

Corollary

*Standardization for λ_n.***
Gödel’s embedding: $\lambda_v \rightarrow \lambda_b$

Translation of formulas

$$A^* = \Box A^*$$

$$X^* = X$$

$$(A_1 \supset A_2)^* = \Box A_1^* \supset \Box A_2^*$$

Translation of terms

$$V^* = \text{box}(V^*)$$

$$(MN)^* = \text{raise}(N^*)M^*$$

$$x^* = \varepsilon(x)$$

$$(\lambda x. M)^* = \lambda x. M^*$$

where

$$\text{raise}(N) := \lambda z. \varepsilon(z)N$$
Gödel’s embedding: $\lambda_v \rightarrow \lambda_b$

Typing

- $\Gamma \vdash M : A$ in λ_v iff $\Gamma^* \vdash M^* : A^*$ in λ_b
- $\Gamma \vdash V : A$ in λ_v iff $\Gamma^* \vdash V^* : A^*$ in λ_b

Notice the derived typing rule

$$
\begin{align*}
\Gamma & \vdash N : B \\
\Gamma & \vdash \text{raise}(N) : (\Box(B \supset B')) \supset B'
\end{align*}
$$
Gödel’s embedding: $\lambda_v \rightarrow \lambda_b$

Theorem (Properties of Gödel’s translation)

1. (Preservation and reflection of reduction) $M \rightarrow_{\beta_v} N$ in λ_v iff $M^* \rightarrow_{\beta_{b2}} N^*$ in λ_b.

2. (Preservation and reflection of evaluation) $M \rightarrow^*_v V$ in λ_v iff $M^* \rightarrow^*_w V^*$ in λ_b.

3. (Preservation and reflection of standard red.) $M \Rightarrow_v N$ in λ_v iff $M^* \Rightarrow_{b2} N^*$ in λ_b.
Gödel’s embedding: \(\lambda_v \rightarrow \lambda_b \)

Theorem (Properties of Gödel’s translation)

1. *(Preservation and reflection of reduction)* \(M \rightarrow_{\beta_v} N \) in \(\lambda_v \) iff \(M^* \rightarrow_{\beta_{b2}} N^* \) in \(\lambda_b \).

2. *(Preservation and reflection of evaluation)* \(M \rightarrow^*_{v} V \) in \(\lambda_v \) iff \(M^* \rightarrow^*_{we} V^* \) in \(\lambda_b \).

3. *(Preservation and reflection of standard red.)* \(M \Rightarrow_{\nu} N \) in \(\lambda_v \) iff \(M^* \Rightarrow_{b2} N^* \) in \(\lambda_b \).

Corollary

Standardization for \(\lambda_v \).
The extra bits in the cbv case

In λ_b define $\beta_{b_2} \subset\rightarrow^{2}_{\text{we}}$:

$$\text{raise}(\text{box}(N))\text{box}(\lambda x. P) \rightarrow [N/\varepsilon(x)]P$$

In λ_b define $\Rightarrow_{b_2} \subset\Rightarrow_{b}$, by replacing

$$M \rightarrow^{*}_{\text{we}} \lambda x. M' \quad N \rightarrow^{*}_{\text{we}} \text{box}(N') \quad [N'/\varepsilon(x)]M' \Rightarrow_{b} P$$

RDX

with

$$N \rightarrow^{*}_{\text{we}} \text{box}(N') \quad M \rightarrow^{*}_{\text{we}} \text{box}(\lambda x. M') \quad [N'/\varepsilon(x)]M' \Rightarrow_{b_2} Q$$

RDX2
The modal target is a new calling paradigm, call-by-box (cbb)
The modal embeddings implement “protect-by-a-box”, an abstract form of the compilation technique “protect-by-a-lambda”
“Protect-by-a-box” has a cbn side and a cbv side
The modal embeddings unify cbn and cbv inside cbb

\(^{1}\)JES, L. Pinto, T. Uustalu, “Modal embeddings and calling paradigms”, FSCD 2019
MORE ONE EMBEDDINGS AND PARADIGMS
Needed

- Improve the properties of Gödel’s embedding
- Change the narrative, to fit better with the strong properties of Girard’s embedding
- Separation of the extra bits by modal reasons
Redesign the modal target

Starting from λ_b

- Forbid types of the form $\Box\Box A$
- Separate, already in the untyped syntax, terms that must have a modal type from those that cannot have a modal type
- Application will remain an ambiguous constructor: separate the two forms (and the corresponding reduction rules)
- Just keep the particular forms of application that show up in the image of the embeddings
Types, terms and reduction

(Types) \[A ::= B | C \]
(Boxed types) \[B ::= □ C \]
(Unboxed types) \[C ::= X | B ⊃ A \]
Types, terms and reduction

(Types) \[A ::= B \mid C \]

(Boxed types) \[B ::= \Box C \]

(Unboxed types) \[C ::= X \mid B \supset A \]

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \epsilon(x) \mid \lambda x. T \mid M@_b Q \]

(Boxed terms) \[P, Q ::= \text{box}(M) \mid M@_b Q \]

\[V \]

[\{ z \}]}
Types, terms and reduction

(Types) \(A ::= B \mid C \)

(Boxed types) \(B ::= □C \)

(Unboxed types) \(C ::= X \mid B \supset A \)

(Terms) \(T ::= M \mid P \)

(Unboxed terms) \(M, N ::= \varepsilon(x) \mid \lambda x. T \mid M@_b Q \)

(Boxed terms) \(P, Q ::= \text{box}(M) \mid M@_b Q \)

\[(\lambda x. T)@\text{box}(N) \rightarrow [N/\varepsilon(x)]M\]
Derived notion of application and reduction

\[
\begin{align*}
\Gamma, z : \Box (B' \supset B) & \vdash \varepsilon(z) : B' \supset B \\
\Gamma, z : \Box (B' \supset B) & \vdash Q : B' \\
\Gamma, z : \Box (B' \supset B) & \vdash \varepsilon(z)@b Q : B \\
\Gamma & \vdash \lambda z . \varepsilon(z)@b Q : (\Box (B' \supset B)) \supset B \\
\Gamma & \vdash P : \Box (B' \supset B) \\
\Gamma & \vdash (\lambda z . \varepsilon(z)@b Q)@b P : B \\
\end{align*}
\]
Derived notion of application and reduction

\[
\begin{align*}
\Gamma, z : \Box (B' \supset B) & \vdash \varepsilon(z) : B' \supset B & \Gamma, z : \Box (B' \supset B) & \vdash Q : B' \\
\Gamma, z : \Box (B' \supset B) & \vdash \varepsilon(z) \@_{b} Q : B & W & \\
\Gamma & \vdash \lambda z . \varepsilon(z) \@_{b} Q : (\Box (B' \supset B)) \supset B & \\
\Gamma & \vdash (\lambda z . \varepsilon(z) \@_{b} Q) \@_{b} P : B & \Gamma & \vdash \Box (B' \supset B) & \quad \Gamma & \vdash P : \Box (B' \supset B) & \quad \Gamma & \vdash QP
\end{align*}
\]

box\((N)(box(\lambda x. P)) \rightarrow [N/\varepsilon(x)]P\)
The final syntax

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \{ x \} \mid \varepsilon(x) \mid \lambda x. T \mid M @ b \mid Q \]

(Boxed terms) \[P, Q ::= P \mid box(M) \mid Q \]

\[V \]

\[B \]
The final syntax

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= [V] \epsilon(x) \mid \lambda x. T \mid M \otimes_b Q \]

(Boxed terms) \[P, Q ::= [B] \text{box}(M) \mid QP \]
The final syntax

(Terms) \(T ::= M \mid P \)

(Unboxed terms) \(M, N ::= \{ \varepsilon(x) \mid \lambda x. T \mid MQ \}

(Boxed terms) \(P, Q ::= \{ \text{box}(M) \mid QP \} \)
The final syntax

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \{ \varepsilon(x) \mid \lambda x. T \mid MQ \} \]

(Boxed terms) \[P, Q ::= \{ \text{box}(M) \mid QP \} \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \mid Q_m \cdots Q_1B \]
The final syntax: another box calculus λ_{\Box}

(Terms) $T ::= M | P$

(Unboxed terms) $M, N ::= \epsilon(x) | \lambda x. T | MQ$

(Boxed terms) $P, Q ::= \text{box}(M) | QP$

The general form of (un)boxed terms

$$VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 \mathcal{B}$$

Two reduction rules

$$(\beta_<) \quad (\lambda x. M)\text{box}(N) \rightarrow [N/\epsilon(x)]M$$

$$(\beta_> \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\epsilon(x)]P$$
Girard’s translation: choose the unboxed mode
Girard’s translation: choose the unboxed mode

(Terms) \[T ::= M | P \]

(Unboxed terms) \[M, N ::= \epsilon(x) | \lambda x. T | MQ \]

(Boxed terms) \[P, Q ::= box(M) | QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \]

\[Q_m \cdots Q_1 B \]

Two reduction rules

(\(\beta_\prec\)) \[(\lambda x.M)box(N) \rightarrow [N/\epsilon(x)]M\]

(\(\beta_\succ\)) \[box(N)(box(\lambda x.P)) \rightarrow [N/\epsilon(x)]P \]
Girard’s translation: choose the unboxed mode

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \varepsilon(x) \mid \lambda x. T \mid MQ \]

(Boxed terms) \[P, Q ::= \text{box}(M) \mid QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B \]

Two reduction rules

\[
\begin{align*}
(\beta_<) & \quad (\lambda x. M)\text{box}(N) \rightarrow [N/\varepsilon(x)]M \\
(\beta_>) & \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\varepsilon(x)]P
\end{align*}
\]
Girard’s translation: choose the unboxed mode

(Terms) \[T ::= M | P \]

(Unboxed terms) \[M, N ::= ε(x) | \lambda x. M | MQ \]

(Boxed terms) \[P, Q ::= \text{box}(M) | QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1B \]

Two reduction rules

\[\begin{align*}
(β_<) \quad (\lambda x. M)\text{box}(N) & \rightarrow [N/ε(x)]M \\
(β_>) \quad \text{box}(N)(\text{box}(\lambda x. P)) & \rightarrow [N/ε(x)]P
\end{align*} \]
Girard’s translation: choose the unboxed mode

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \varepsilon(x) \mid \lambda x. M \mid M_{box}(N) \]

(Boxed terms) \[P, Q ::= box(M) \mid QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B \]

Two reduction rules

\[(\beta_<) \quad (\lambda x. M)_{box}(N) \rightarrow [N/\varepsilon(x)]M \]
\[(\beta_>\) \quad box(N)(box(\lambda x. P)) \rightarrow [N/\varepsilon(x)]P \]
Girard’s translation: choose the unboxed mode

\[(\text{T}erms) \quad T \ ::= \ M \mid P\]

\[(\text{Unboxed terms}) \quad M, N \ ::= \ \varepsilon(x) \mid \lambda x. M \mid M_{\text{box}}(N)\]

\[(\text{Boxed terms}) \quad P, Q \ ::= \ \text{box}(M) \mid QP\]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B\]

Two reduction rules

\[\beta_< \quad (\lambda x. M)_{\text{box}}(N) \rightarrow [N/\varepsilon(x)] M\]

\[\beta_> \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\varepsilon(x)] P\]
Girard’s translation: choose the unboxed mode

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \varepsilon(x) \mid \lambda x. M \mid M_{\text{box}}(N) \]

(Boxed terms) \[P, Q ::= \text{box}(M) \mid QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \]

\[Q_m \cdots Q_1 B \]

Two reduction rules

\[(\beta_<) \quad (\lambda x. M)_{\text{box}}(N) \rightarrow [N/\varepsilon(x)]M \]

\[(\beta_> \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\varepsilon(x)]P \]
Girard’s translation: choose the unboxed mode

(Terms) \(T ::= M | P \)

(Unboxed terms) \(M, N ::= \epsilon(x) | \lambda x. M | M \text{box}(N) \)

(Boxed terms) \(P, Q ::= \text{box}(M) | QP \)

The general form of (un)boxed terms

\(VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B \)

Two reduction rules

\[
\begin{align*}
(\beta_<) & \quad (\lambda x. M) \text{box}(N) \rightarrow [N/\epsilon(x)] M \\
(\beta_>) & \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\epsilon(x)] P
\end{align*}
\]
Gödel’s translation: choose the boxed mode

Terms

\[T ::= M | P \]

Unboxed terms

\[M, N ::= \{ z \} | \{ \} \epsilon (x) | \lambda x. T | MQ \]

Boxed terms

\[P, Q ::= \text{box}(M) | \{ z \} B | QP \]

The general form of (un)boxed terms

\[VQ_1 \ldots Q_m Q_m \ldots Q_1 B \]

Two reduction rules

(\beta < 0)

\[(\lambda x. M)\text{box}(N) \rightarrow \left[N/\epsilon(x) \right] M\]

(\beta > 0)

\[
\text{box}(N)(\text{box}(\lambda x. P)) \rightarrow \left[N/\epsilon(x) \right] P
\]
Gödel’s translation: choose the boxed mode

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \varepsilon(x) \mid \lambda x. T \mid MQ \]

(Boxed terms) \[P, Q ::= \text{box}(M) \mid QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1B \]

Two reduction rules

\[(\beta_<) \quad (\lambda x.M)\text{box}(N) \rightarrow [N/\varepsilon(x)]M \]

\[(\beta_>) \quad \text{box}(N)(\text{box}(\lambda x.P)) \rightarrow [N/\varepsilon(x)]P \]
Gödel’s translation: choose the boxed mode

(Terms) \[T ::= M \mid P \]

(Unboxed terms) \[M, N ::= \varepsilon(x) \mid \lambda x. T \mid MQ \]

(Boxed terms) \[P, Q ::= \text{box}(M) \mid QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B \]

Two reduction rules

\[(\beta_<) \quad (\lambda x. M)\text{box}(N) \rightarrow [N/\varepsilon(x)]M \]
\[(\beta_>) \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\varepsilon(x)]P \]
Gödel’s translation: choose the boxed mode

\[
(Terms) \quad T ::= M \mid P
\]

\[
(Unboxed \ terms) \quad M, N ::= \varepsilon(x) \mid \lambda x.P \mid MQ
\]

\[
(Boxed \ terms) \quad P, Q ::= \text{box}(M) \mid QP
\]

The general form of (un)boxed terms

\[\begin{array}{l}
VQ_1 \cdots Q_m \\
Q_m \cdots Q_1 B
\end{array}\]

Two reduction rules

\[
\begin{array}{ll}
(\beta_<) & (\lambda x.M)\text{box}(N) \rightarrow [N/\varepsilon(x)]M \\
(\beta_> \) & \text{box}(N)(\text{box}(\lambda x.P)) \rightarrow [N/\varepsilon(x)]P
\end{array}
\]
Gödel’s translation: choose the boxed mode

(Terms) \(T ::= M | P \)

(Unboxed terms) \(V ::= \varepsilon(x) | \lambda x. P | MQ \)

(Boxed terms) \(P, Q ::= \text{box}(V) | QP \)

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B \]

Two reduction rules

\[(\beta_<) \quad (\lambda x. M)\text{box}(N) \rightarrow [N/\varepsilon(x)] M \]
\[(\beta_> \quad \text{box}(N)(\text{box}(\lambda x. P)) \rightarrow [N/\varepsilon(x)] P \]
Gödel’s translation: choose the boxed mode

(Terms) \[T ::= M | P \]

(Unboxed terms) \[V ::= ε(x) | λx.P | MQ \]

(Boxed terms) \[P, Q ::= \text{box}(V) | QP \]

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1B \]

Two reduction rules

\[(β_<) \quad (λx.M)\text{box}(N) \rightarrow [N/ε(x)]M \]
\[(β_>) \quad \text{box}(N)(\text{box}(λx.P)) \rightarrow [N/ε(x)]P \]
Gödel’s translation: choose the boxed mode

(Terms) \(T ::= M | P \)

(Unboxed terms) \(V ::= \varepsilon(x) | \lambda x.P | MQ \)

(Boxed terms) \(P, Q ::= \text{box}(V) | QP \)

The general form of (un)boxed terms

\[VQ_1 \cdots Q_m \quad Q_m \cdots Q_1 B \]

Two reduction rules

\[
\begin{align*}
(\beta_\prec) \quad & \quad (\lambda x.M)\text{box}(N) & \rightarrow & \quad [N/\varepsilon(x)]M \\
(\beta_\succ) \quad & \quad \text{box}(N)(\text{box}(\lambda x.P)) & \rightarrow & \quad [N/\varepsilon(x)]P
\end{align*}
\]
Results

Theorem (Properties of Girard’s translation from λ_n to λ_\otimes)

1. $M \rightarrow_{\beta_n} N$ in λ_n iff $M^\circ \rightarrow_{\beta} N^\circ$ in λ_\otimes.
2. $M \rightarrow^*_{n} N$ in λ_n iff $M^\circ \rightarrow_{b} N^\circ$ in λ_\otimes.
3. $M \Rightarrow_{n} N$ in λ_n iff $M^\circ \Rightarrow_{\otimes} N^\circ$ in λ_\otimes.

Theorem (Properties of Gödel’s translation from λ_v to λ_\otimes)

1. $M \rightarrow_{\beta_v} N$ in λ_v iff $M^* \rightarrow_{\beta} N^*$ in λ_\otimes.
2. $M \rightarrow^*_{v} N$ in λ_v iff $M^* \rightarrow_{b} N^*$ in λ_\otimes.
3. $M \Rightarrow_{v} N$ in λ_v iff $M^* \Rightarrow_{\otimes} N^*$ in λ_b.
The modal target still follows call-by-box and combines two “modes” of the application constructor and reduction.

Each mode corresponds to a calling paradigm cbn or cbv.

The modal embeddings point out isomorphic copies of cbn or cbn inside cbb.

Cbn and Cbv coexist inside cbb.

\(^2\)JES, L. Pinto, T. Uustalu, “Plotkin’s lambda-calculus as a modal calculus”, JLAMP, 2022
Work in progress

- Explore the redesigned modal calculus λ_\Rightarrow
- Work out fully the several instantiations
THANK YOU