EQUIVALENCE BETWEEN TYPED AND UNTYPED ALGORITHMIC CONVERSION

Meven LENNON-BERTAND
Types Conference – June 22nd 2022
A TALE OF TWO (OR FOUR) CONVERSIONS
Typed and Untyped Conversions, Declarative and Algorithmic

- Two traditions: MLTT (typed) vs PTS (untyped)
 - Typed: good story for η laws
 - Untyped: more efficient, thus used in COQ

Declarative and Algorithmic Conversion

- Declarative: standard presentation, but no direct algorithm
- Algorithmic: easy to relate to an algorithm, but not a good specification
Typed and Untyped Conversion

- Two traditions: MLTT (typed) vs PTS (untyped)
- Typed: good story for η laws
- Untyped: more efficient, thus used in CoQ
Typed and Untyped Conversions, Declarative and Algorithmic

<table>
<thead>
<tr>
<th>Typed and Untyped Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two traditions: MLTT (typed) vs PTS (untyped)</td>
</tr>
<tr>
<td>• Typed: good story for η laws</td>
</tr>
<tr>
<td>• Untyped: more efficient, thus used in CoQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Declarative and Algorithmic Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Declarative: standard presentation, but no direct algorithm</td>
</tr>
<tr>
<td>• Algorithmic: easy to relate to an algorithm, but not a good specification</td>
</tr>
</tbody>
</table>
The Situation So Far

Typed declarative (“MLTT”) \[\rightarrow\] [AC07] \[\rightarrow\] [AÖV18] \[\rightarrow\] [SH12] \[\rightarrow\] \[\rightarrow\]

Untyped declarative (“PTS”) \[\leftrightarrow\] \[\leftrightarrow\] \[\leftrightarrow\] \[\leftrightarrow\] Untyped algorithmic (“Coq”)

Typed algorithmic (“Agda”)

• [AC07], [AÖV18]: stronger logical power than the studied system
• [SH12], METACOQ: no η laws
• [AC07], [AÖV18]: stronger logical power than the studied system
• [SH12], METACOQ: no η laws
• !!: Can we do this? With a low logical power?
HOW DO WE DO THIS?
Typed conversion: put bidirectional lenses on

• \(\Gamma \vdash t \leftrightarrow t' : T \) with \(T \) as input, \(\Gamma \vdash n \leftrightarrow n' : T \) with \(T \) as output

• Motto: Conversion \(\leftrightarrow \) checks, neutral comparison \(\leftrightarrow \) infers

\[
\begin{align*}
\Gamma, x : A \vdash f \; x \leftrightarrow g \; x : B \\
\Gamma \vdash f \leftrightarrow g : \Pi \; x : A. \; B
\end{align*}
\]
Typed conversion: put bidirectional lenses on

- $\Gamma \vdash t \leftrightarrow t' : T$ with T as input, $\Gamma \vdash n \leftrightarrow n' : T$ with T as output.
- Motto: Conversion \iff checks, neutral comparison \iff infers

\[
\frac{\Gamma, x : A \vdash f \ x \iff g \ x : B}{\Gamma \vdash f \iff g : \Pi \ x : A. \ B}
\]

Untyped conversion

- Same general structure: conversion + neutral comparison.
- Main difference: term-directed instead of type-directed.

\[
\begin{align*}
n \ x & \iff t \quad n \text{ neutral} \\
\frac{n \iff \lambda \ x : A. \ t}{+ \text{ symmetric}}
\end{align*}
\]

\[
\begin{align*}
t & \iff t' \\
\frac{\lambda \ x : A. \ t \iff \lambda \ x : A'. \ t'}{}
\end{align*}
\]
A Proof in Two Steps

Step 1: McBride’s discipline
- Flow of well-formation information for well-behaved bidirectional rules
- Respected by the relation
- Needs meta-theory of the typed variant

Step 2: Relate the rules
- Reasoning on weak-head normal forms
- Rather straightforward

Work in progress, worked out on a toy system ($\lambda \Pi \Box$) on paper.
Does it scale all the way to PCUIC?
A Proof in Two Steps

Step 1: McBride’s discipline

- Flow of well-formation information for well-behaved bidirectional rules
- Respected by the relation
- Needs meta-theory of the typed variant

Step 2: Relate the rules

- Reasoning on weak-head normal forms
- Rather straightforward

Work in progress, worked out on a toy system ($\lambda \Pi \Box$) on paper. Does it scale all the way to PCUIC?
A PROOF IN TWO STEPS

<table>
<thead>
<tr>
<th>Step 1: McBride’s discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flow of well-formation information for well-behaved bidirectional rules</td>
</tr>
<tr>
<td>• Respected by the relation</td>
</tr>
<tr>
<td>• Needs meta-theory of the typed variant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2: Relate the rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reasoning on weak-head normal forms</td>
</tr>
<tr>
<td>• Rather straightforward</td>
</tr>
</tbody>
</table>
A Proof in Two Steps

Step 1: McBride’s discipline
- Flow of well-formation information for well-behaved bidirectional rules
- Respected by the relation
- Needs meta-theory of the typed variant

Step 2: Relate the rules
- Reasoning on weak-head normal forms
- Rather straightforward

Work in progress, worked out on a toy system ($\lambda\Pi\Box$) on paper.
A Proof in Two Steps

<table>
<thead>
<tr>
<th>Step 1: McBride’s discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flow of well-formation information for well-behaved bidirectional rules</td>
</tr>
<tr>
<td>• Respected by the relation</td>
</tr>
<tr>
<td>• Needs meta-theory of the typed variant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2: Relate the rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reasoning on weak-head normal forms</td>
</tr>
<tr>
<td>• Rather straightforward</td>
</tr>
</tbody>
</table>

Work in progress, worked out on a toy system ($\lambda\Pi\Box$) on paper.

Does it scale all the way to PCUIC?
THANK YOU!

