Capable GV
Capabilities for Session Types in GV

Magdalena J. Latifa and Ornela Dardha

TYPES 2022
Session types

- Communication formalism

- Guarantees: communication safety, session fidelity and privacy

- Rely on *linearity*
• Functional calculus with session types
• Correspondence to classical linear logic
• Programs are well behaved
• Practical suitability
• Many extensions have been developed
PQB

• Not currently possible in any of the current GVs

• Can be implemented via simply passing the channel endpoint but then neither P nor Q have the guarantee they are communicating directly with B

• For example, P could pretend to send over channel a and instead send over a new channel and snoop on Q’s details
Channel sharing

- The solution to the PQB problem
- Channel endpoints can be accessed by multiple processes
- Need to enforce linearity for communication safety...
Capabilities

- **Split** channels into *channel endpoints* and their capabilities
- Allows the *endpoints to be unrestricted by keeping capabilities linear*
- Technique originated in region-based memory management
Capable GV

- Incorporates capabilities into the linear setting of GV

- Based predominantly on constructs from PGV rather than other GV extension to take advantage of cyclic structure

- Static elements: terms, types, typing rules

- The rest in progress...
CGV types

\[T, U : ::= T \times U \mid T + U \mid tr (\rho) \mid [\rho \ (S)] \]
\[\mid 1 \mid T \ (C) \Rightarrow \ (C') \ U \]

\[\Gamma ::= \emptyset \mid \Gamma, \ x : T \]
\[\Delta ::= \emptyset \mid \Delta, \ \rho \]
\[C ::= \emptyset \mid C \otimes \rho \ (S) \]
CGV types

\[T, U : ::= T \times U \mid T + U \mid \text{tr} (\rho) \mid [\rho (S)] \mid 1 \mid T (C) \sim (C') U \]

\[\Gamma : ::= \emptyset \mid \Gamma, x : T \]

\[\Delta : ::= \emptyset \mid \Delta, \rho \]

\[C : ::= \emptyset \mid C \otimes \rho (S) \]
CGV types

\[T, U : ::= T \times U | T + U | tr(\rho) | [\rho(S)] | 1 | T(C) \sim (C')U \]

\[\Gamma : ::= \emptyset | \Gamma, x : T \]

\[\Delta : ::= \emptyset | \Delta, \rho \]

\[C : ::= \emptyset | C \otimes \rho(S) \]
Typing judgements

• $\Gamma ; \Delta ; \vdash V : T$
 under typing environment Γ and capability environment Δ, term V is of type T

• $\Gamma ; \Delta ; C \vdash M : T \triangleright C'$
 under typing environment Γ and capability environment Δ and with capability set C, term M is of type T and produces capability set C'
Typing judgements

• \(\Gamma; \Delta; \vdash V : T \)
 under typing environment \(\Gamma \) and capability environment \(\Delta \),
 term \(V \) is of type \(T \)

• \(\Gamma; \Delta; C \vdash M : T \triangleright C' \)
 under typing environment \(\Gamma \) and capability environment \(\Delta \) and with
 capability set \(C \), term \(M \) is of type \(T \) and produces capability set \(C' \)
CGV terms

$$V, W ::= () \mid x \mid \lambda x . M \mid (V, W) \mid \text{inl } V \mid \text{inr } V$$

$$L, M, N ::= VW \mid \text{return } V \mid \text{let } x = M \text{ in } N$$
$$\mid \text{let } (x, y) = V \text{ in } M \mid \text{let } () = V \text{ in } M$$
$$\mid \text{case } L \{ \text{inl } x \mapsto \to M; \text{inr } y \mapsto \to N \}$$
$$\mid \text{new} \mid \text{send } V \mid \text{recv } V \mid \text{close } V$$
$$\mid \text{inact } V \mid \text{act } V \mid \text{spawn } M$$
CGV terms

\[V, W ::= () \mid x \mid \lambda x . M \mid (V, W) \mid \text{inl } V \mid \text{inr } V \]

\[L, M, N ::= VW \mid \text{return } V \mid \text{let } x = M \text{ in } N \]
\[\mid \text{let } (x, y) = V \text{ in } M \mid \text{let } () = V \text{ in } M \]
\[\mid \text{case } L \{ \text{inl } x \mapsto \rightarrow M; \text{inr } y \mapsto \rightarrow N \} \]
\[\mid \text{new} \mid \text{send } V \mid \text{recv } V \mid \text{close } V \]
\[\mid \text{inact } V \mid \text{act } V \mid \text{spawn } M \]
\begin{align*}
\text{\texttt{T-Recv}} \\
\Gamma; \Delta \vdash V : tr(\rho) \\
\hline
\Gamma; \Delta; C \otimes \rho(\texttt{?T.S}) \vdash \texttt{recv} \ V : T \rightarrow C \otimes \rho(S)
\end{align*}

\begin{align*}
\text{\texttt{T-Send}} \\
\Gamma; \Delta \vdash V : T \times tr(\rho) \\
\hline
\Gamma; \Delta; C \otimes \rho(\texttt{!T.S}) \vdash \texttt{send} \ V : 1 \rightarrow C \otimes \rho(S)
\end{align*}
\[\text{T-Recv} \]

\[
\Gamma; \Delta \vdash V : tr(\rho)
\]

\[
\Gamma; \Delta; C \otimes \rho(\text{?T.S}) \vdash \text{recv} \ V : T \rightarrow C \otimes \rho(S)
\]

\[\text{T-Send} \]

\[
\Gamma; \Delta \vdash V : T \times tr(\rho)
\]

\[
\Gamma; \Delta; C \otimes \rho(!T.S) \vdash \text{send} \ V : 1 \rightarrow C \otimes \rho(S)
\]
\[\text{T-Recv} \]
\[
\frac{\Gamma; \Delta \vdash V : tr(\rho)}{\Gamma; \Delta; C \otimes \rho(\mathit{T.S}) \vdash \text{recv } V : T \triangleright C \otimes \rho(S)}
\]

\[\text{T-Send} \]
\[
\frac{\Gamma; \Delta \vdash V : T \times tr(\rho)}{\Gamma; \Delta; C \otimes \rho(!\mathit{T.S}) \vdash \text{send } V : 1 \triangleright C \otimes \rho(S)}
\]
CGV terms

\[V, W ::= (\) | x | \lambda x . M | (V, W) | \text{inl } V | \text{inr } V \]

\[L, M, N ::= V W | \text{return } V | \text{let } x = M \text{ in } N \]
\[| \text{let } (x, y) = V \text{ in } M | \text{let } () = V \text{ in } M \]
\[| \text{case } L \{\text{inl } x \mapsto \rightarrow M; \text{inr } y \mapsto \rightarrow N\} \]
\[| \text{new} | \text{send } V | \text{recv } V | \text{close } V \]
\[| \text{inact } V | \text{act } V | \text{spawn } M \]
\[
\text{T-Inact} \quad \Gamma; \Delta \vdash V : tr(\rho) \\
\hline
\Gamma; \Delta; C \otimes \rho(S) \vdash \text{inact } V : [\rho(S)] \triangleright C
\]

\[
\text{T-Act} \quad \Gamma; \Delta \vdash V : [\rho(S)] \\
\hline
\Gamma; \Delta; C \vdash \text{act } V : 1 \triangleright C \otimes \rho(S)
\]
\[T\text{-Inact} \]
\[
\Gamma; \Delta \vdash V : \text{tr}(\rho) \\
\Gamma; \Delta; C \otimes \rho(S) \vdash \text{inact } V : [\rho(S)] \triangleright C
\]

\[T\text{-Act} \]
\[
\Gamma; \Delta \vdash V : [\rho(S)] \\
\Gamma; \Delta; C \vdash \text{act } V : 1 \triangleright C \otimes \rho(S)
\]
T-Inact

\[\Gamma; \Delta \vdash V : tr(\rho) \]

\[\Gamma; \Delta; C \otimes \rho(S) \vdash \text{inact } V : [\rho(S)] \triangleright C \]

T-Act

\[\Gamma; \Delta \vdash V : [\rho(S)] \]

\[\Gamma; \Delta; C \vdash \text{act } V : 1 \triangleright C \otimes \rho(S) \]
CGV terms

\[V, W ::= () \mid x \mid \lambda x \cdot M \mid (V, W) \mid \text{inl } V \mid \text{inr } V \]

\[L, M, N ::= V W \mid \text{return } V \mid \text{let } x = M \text{ in } N \]
\[\quad \mid \text{let } (x, y) = V \text{ in } M \mid \text{let } () = V \text{ in } M \]
\[\quad \mid \text{case } L \{ \text{inl } x \mapsto \rightarrow M; \text{inr } y \mapsto \rightarrow N \} \]
\[\quad \mid \text{new} \mid \text{send } V \mid \text{recv } V \mid \text{close } V \]
\[\quad \mid \text{inact } V \mid \text{act } V \mid \text{spawn } M \]
T-LetBind
\[\Gamma_1; \Delta_1; C \vdash M : T \triangleright C' \quad \Gamma_2, x : T; \Delta_2; C' \vdash N : U \triangleright C'' \]
\[\Gamma_1 \circ \Gamma_2; \Delta_1, \Delta_2; C \vdash \text{let } x = M \text{ in } N : U \triangleright C'' \]

T-Spawn
\[\Gamma; \Delta; C_S \vdash M : 1 \triangleright \emptyset \]
\[\Gamma; \Delta; C \otimes C_S \vdash \text{spawn } M : 1 \triangleright C \]
T-LetBind

\[
\Gamma_1; \Delta_1; C \vdash M : T \triangleright C' \quad \Gamma_2, x : T; \Delta_2; C' \vdash N : U \triangleright C''
\]

\[
\Gamma_1 \circ \Gamma_2; \Delta_1, \Delta_2; C \vdash \text{let } x = M \text{ in } N : U \triangleright C''
\]

T-Spawn

\[
\Gamma; \Delta; C_s \vdash M : 1 \triangleright \emptyset
\]

\[
\Gamma; \Delta; C \otimes C_s \vdash \text{spawn } M : 1 \triangleright C
\]
T-LetBind
\[\Gamma_1; \Delta_1; C \vdash M : T \Rightarrow C' \quad \Gamma_2, x : T; \Delta_2; C' \vdash N : U \Rightarrow C'' \]
\[\Gamma_1 \circ \Gamma_2; \Delta_1, \Delta_2; C \vdash \text{let } x = M \text{ in } N : U \Rightarrow C'' \]

T-Spawn
\[\Gamma; \Delta; C_S \vdash M : 1 \Rightarrow \emptyset \]
\[\Gamma; \Delta; C \otimes C_S \vdash \text{spawn } M : 1 \Rightarrow C \]
Conclusion

• CGV allows channel sharing - PQB is typeable
• Linearity of communication is enforced via type-end-effect system
• Operational semantics in the works
• Expecting to preserve subject reduction but introduce deadlocks
• Can restore deadlock-freedom e.g. via priorities

Thank you!