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Synthetic Computability Theory1

Exploit that in constructive foundations, every definable function is computable:

A : X → P is decidable := ∃d : X → B. ∀x .Ax ↔ d x = true

A : X → P many-one-reduces to B : Y → P := ∃r : X → Y .∀x .Ax ↔ B (r x)

Pros:

Avoid manipulating Turing machines or equivalent model of computation

Elegant formalisation (e.g. in CIC), feasible mechanisation (e.g. in Coq)

Cons:

Finding a correct synthetic rendering of Turing reductions not so straightforward

But Turing reductions are needed for interesting results like Kleene-Post and Post

1Richman (1983); Bauer (2006)
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Synthetic Oracle Machines

We had some failed attempts, Andrej Bauer’s proposal (Bauer (2021)) came to our rescue2

A synthetic oracle machine is an operation on functional relations N→ B→ P

R : {A : N→ B→ P | A functional} → {A : N→ B→ P | A functional}

factoring through a computational core on partial functions N⇀ B

r : (N⇀ B)→ N⇀ B with ∀f : N⇀ B.R f = r f

satisfying the requirement that R be continuous:

R An b → ∃L : N∗. L ⊆ dom(A) ∧ ∀A′.A′ =L A→ R A′ n b

Axiom: there is an enumeration Rn of oracle machines

A �T B := A Turing-reduces to B if there is an oracle machine R with R B = A

2See Forster (2021) and the related TYPES abstract Forster and Kirst (2022)
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The Kleene-Post Theorem (à la Odifreddi (1992))

Goal: construct incomparable Turing degrees A :=
⋃

n:N σn and B :=
⋃

n:N τn

Characterise σn and τn inductively by a predicate n . (σ, τ) with:

If n . (σ, τ) and n . (σ′, τ ′), then σ = σ′ and τ = τ ′

For every n there not not exist σ and τ with n . (σ, τ)

If 2n . (σ, τ), then Rn A differs from B at position |τ |

If 2n + 1 . (σ, τ), then Rn B differs from A at position |σ|

Theorem (Kleene-Post)

There are predicates A and B such that neither A �T B nor B �T A.
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Goal: construct incomparable Turing degrees A :=
⋃

n:N σn and B :=
⋃

n:N τn

Characterise σn and τn inductively by a predicate n . (σ, τ) with:

If n . (σ, τ) and n . (σ′, τ ′), then σ = σ′ and τ = τ ′

For every n there not not exist σ and τ with n . (σ, τ)

If 2n . (σ, τ), then Rn A differs from B at position |τ |

If 2n + 1 . (σ, τ), then Rn B differs from A at position |σ|

Theorem (Kleene-Post)

There are predicates A and B such that neither A �T B nor B �T A.

Kirst, Mück, Forster Synthetic Kleene-Post and Post June 23rd, 2022 4



The Kleene-Post Theorem (à la Odifreddi (1992))
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Post’s Theorem (à la Odifreddi (1992))

Goal: connect the arithmetical hierarchy with iterated Turing jumps ∅(n)

Represent the arithmetical hierarchy on predicates p : Nk → P inductively:

f : Nk → B
Σ0(λ~x . f ~x = true)

f : Nk → B
Π0(λ~x . f ~x = true)

Πn p

Σn+1(λ~x .∃y . p (y :: ~x))

Σn p

Πn+1(λ~x .∀y . p (y :: ~x))

Turing jump of A := λn.Rn An true

A is semi-decidable relative to B := ∃R.∀n.An↔ R B n true

Theorem (Post)

Assuming LEM (∀p. p ∨ ¬p), the following can be shown:

A predicate A is Σn+1 iff it is semi-decidable relative to ∅(n).
If A is Σn, then A �T ∅(n). If n > 0 already A �m ∅(n) for synthetic many-one reductions.
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Outlook

1 Investigate if the enumeration Rn can be obtained using Church’s thesis (Kreisel (1965))
⇒ Maybe possible using Kleene’s second algebra (Kleene (1952))

2 Analyse use of LEM in Post’s theorem (though deemed consistent with enumeration Rn)
⇒ Avoid switching between Σn and Πn via complementation (Akama et al. (2004))

3 Tackle Post’s problem regarding an undecidable but enumerable degree below ∅(1)
⇒ Following Friedberg (1957) and Mučnik (1956) or Kučera (1986)

Thanks for your attention!
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Backup Kleene-Post

Characterise σn and τn inductively by . : N→ B∗ → B∗ → P with 0 . (ε, ε) and:

2n . (σ, τ) σ′ least extension of σ with b = rn σ
′ |τ |

2n + 1 . (σ′, τ ++[¬b])

2n . (σ, τ) ¬(∃σ′b. σ′ ≥ σ ∧ b = rn σ
′ |τ |)

2n + 1 . (σ, τ ++[false])

2n + 1 . (σ, τ) τ ′ least extension of τ with b = rn τ
′ |σ|

2n + 2 . (σ++[¬b], τ ′)

2n + 1 . (σ, τ) ¬(∃τ ′b. τ ′ ≥ τ ∧ b = rn τ
′ |σ|)

2n + 2 . (σ++[false], τ)
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Backup Post

Theorem (Post’)

Assuming LEM (∀p. p ∨ ¬p), the following can be shown:

A predicate A is Σn+1 iff it is semi-decidable relative to some B in Πn.

If A is Σn, then A �T ∅(n). If n > 0 already A �m ∅(n) for synthetic many-one reductions.

Lemma

Given an oracle machine R with core r , termination R An b is equivalent to

∃LtrueLfalse. (∀n ∈ Ltrue.Ab true) ∧ (∀n ∈ Lfalse.Ab false) ∧ r (lookup Ltrue Lfalse) n = b

where lookup Ltrue Lfalse n returns true if n ∈ Ltrue, false if n ∈ Lfalse, and diverges otherwise.
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